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Abstract. Lovász gave a short proof of Brooks’ theorem by coloring greedily in a good
order. We give a different short proof by reducing to the cubic case. Then we show how to
extend the result to (online) list coloring via the Kernel Lemma.

In [7] Lovász gave a short proof of Brooks’ Theorem [1] by coloring greedily in a good
order. Here we give a different short proof by reducing to the cubic case. One interesting
feature of the proof is that it doesn’t use any connectivity concepts. Our notation follows
Diestel [2] except we write Kt instead of Kt for the complete graph on t vertices.

Brooks’ Theorem. Every graph satisfies χ ≤ max {3, ω,∆}.

Proof. Suppose the theorem is false and choose a counterexample G minimizing |G|. Put
∆ := ∆(G). Using minimality of |G|, we see that χ(G − v) ≤ ∆ for all v ∈ V (G). In
particular, G is ∆-regular.

First, suppose G is 3-regular. If G contains a diamond D, then we may 3-color G−D and
easily extend the coloring to D by first coloring the nonadjacent vertices in D the same. So,
G doesn’t contain diamonds. Since G is not a forest it contains an induced cycle C. Since
K4 6⊆ G we have |N(C)| ≥ 2. So, we may take different x, y ∈ N(C) and put H := G − C
if x is adjacent to y and H := (G − C) + xy otherwise. Then, H doesn’t contain K4 as
G doesn’t contain diamonds. By minimality of |G|, H is 3-colorable. That is, we have a
3-coloring of G−C where x and y receive different colors. We can easily extend this partial
coloring to all of G since each vertex of C has a set of two available colors and some pair of
vertices in C get different sets.

Hence we must have ∆ ≥ 4. Consider a ∆-coloring of G − v for some v ∈ V (G). Each
color must be used on every K∆ in G − v and hence some color must be used on every
K∆ in G. Let M be such a color class expanded to a maximal independent set. Then
χ(G−M) = χ(G)− 1 = ∆ > max {3, ω(G−M),∆(G−M)}, a contradiction. �

We note that the reduction to the cubic case is an immediate consequence of more general
lemmas on hitting all maximum cliques with an independent set (see [5], [8] and [4]). H.
Tverberg pointed out that this reduction was also demonstrated in his paper [9].

Lifting to (online) list coloring

In [6], Kostochka and Yancey gave a simple, yet powerful, application of the Kernel Lemma
to a list coloring problem. In [3], we generalized their idea to get a widely applicable general
tool. As an illustration, we use a special case of this tool to prove the list coloring version
of Brooks’ Theorem (first proved by Vizing [10]). The same argument proves the online list
coloring version of Brooks’ Theorem, but we will stick to ordinary list coloring for simplicity.
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A kernel in a digraph D is an independent set I ⊆ V (D) such that each vertex in V (D)−I
has an edge into I. A digraph in which every induced subdigraph has a kernel is called
kernel-perfect. A simple induction argument shows that kernel-perfect orientations can be
very useful for list coloring:

Kernel Lemma. Let G be a graph and f : V (G)→ N. If G has a kernel-perfect orientation
such that f(v) ≥ d+(v) + 1 for each v ∈ V (G), then G is f -choosable.

All bipartite graphs are kernel-perfect, the following lemma from [6] generalizes this fact.

Lemma 1. Let A be an independent set in a graph G and put B := V (G)−A. Any digraph
created from G by replacing each edge in G[B] by a pair of opposite arcs and orienting the
edges between A and B arbitrarily is kernel-perfect.

Proof. In a minimum counterexample G, to get a contradiction it suffices to construct a
kernel. But this is easy since either A is a kernel or there is some v ∈ B which has no out
neighbors in A. In the latter case, a kernel in G − v − N(v) together with v is a kernel in
G. �

Theorem 2. Every graph satisfies χl ≤ max {3, ω,∆}.

Proof. Suppose the theorem is false and choose a counterexample G minimizing |G|. Put
∆ := ∆(G). Using minimality of |G|, we see that χl(G − v) ≤ ∆ for all v ∈ V (G). In
particular, G is ∆-regular.

By Brooks’ Theorem, χ(G) ≤ ∆ and hence α(G) ≥ |G|
∆

. Let A be a maximum independent
set in G and put B := V (G) − A. Then there are α(G)∆ ≥ |G| edges between A and B.
Hence there exist nonempty induced subgraphs H of G with at least |H| edges between
A ∩ V (H) and B ∩ V (H). Pick such an H minimizing |H|. For v ∈ V (H), let dv be the
number of edges between A ∩ V (H) and B ∩ V (H) incident to v. We’ll use minimality of
|H| to show that dv = 2 for all v ∈ V (H). Clearly, dv ≥ 2. Suppose dv < dw for some other
w ∈ V (H). Then there are at least |H|+ dw − 2 edges across and hence removing v violates
minimality. So, dv = dw for all v, w ∈ V (H). Call this common value d. Then there are at
least (d− 1)|H| edges across. Since (d− 1)|H| − d ≥ |H| − 1 for d > 2, applying minimality
shows that d = 2. Hence the edges between A∩V (H) and B∩V (H) induce a disjoint union
of cycles.

Create a digraph Q from H by replacing each edge in H[B ∩ V (H)] by a pair of opposite
arcs and orienting the edges between A∩V (H) and B∩V (H) around their respective cycles.
Then Q is kernel-perfect by Lemma 1. Since d+(v) ≤ d(v)− 1 for each v ∈ V (Q), applying
the Kernel Lemma shows that H is f -choosable where f(v) := d(v) for all v ∈ V (H). But
then given any ∆-list-assignment on G, we can color G −H from its lists by minimality of
|G| and then complete the coloring to H, a contradiction. �

The ad-hoc orientation construction in the above proof can be replaced with the following
general lemma. This lemma follows easily by taking an arbitrary orientation and repeatedly
reversing paths if doing so gets a gain (really, this is just the proof of the max-flow min-cut
theorem). This can also be proved by splitting vertices and applying Hall’s theorem.
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Lemma 3. Let G be a graph and g : V (G) → N. Then G has an orientation such that
d−(v) ≥ g(v) for all v ∈ V (G) iff for every H EG we have

‖H‖+ ‖H,G−H‖ ≥
∑

v∈V (H)

g(v).

Using Lemma 3 in a similar way to the proof of Brooks’ Theorem for list coloring above,
we get the general tool from [3].

Lemma 4. Let G be a nonempty graph and f : V (G) → N with f(v) ≤ dG(v) + 1 for all
v ∈ V (G). If there is independent A ⊆ V (G) such that

‖A,G− A‖ ≥
∑

v∈V (G)

dG(v) + 1− f(v),

then G has a nonempty induced subgraph H that is (online) fH-choosable where fH(v) :=
f(v) + dH(v)− dG(v) for v ∈ V (H).

In the case of Brooks’ theorem, we want f(v) := dG(v), so the right side of the condition
in Lemma 4 just equals |G| and thus the existence of the desired A follows immediately from

α(G) ≥ |G|
∆

. More generally, as shown in [3], the classification of (online) degree-choosable
graphs is a quick corollary of Lemma 4.
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