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Abstract. Lovász gave a short proof of Brooks’ theorem by coloring greedily in a good
order. We give a different short proof by reducing to the cubic case.

In [5] Lovász gave a short proof of Brooks’ theorem by coloring greedily in a good order.
Here we give a different short proof by reducing to the cubic case. One interesting feature of
the proof is that it doesn’t use any connectivity concepts. Our notation follows Diestel [2].

Theorem 1 (Brooks [1] 1941). Every graph G with χ(G) = ∆(G)+1 ≥ 4 contains K∆(G)+1.

Proof. Suppose the theorem is false and choose a counterexample G minimizing |G|. Put
∆ := ∆(G). Using minimality of |G|, we see that χ(G − v) ≤ ∆ for all v ∈ V (G). In
particular, G is ∆-regular.

First, suppose ∆ ≥ 4. Pick v ∈ V (G) and let w1, . . . , w∆ be v’s neighbors. Since K∆+1 6⊆
G, by symmetry we may assume that w2 and w3 are not adjacent. Choose a (∆+1)-coloring
{{v} , C1, . . . , C∆} of G where wi ∈ Ci so as to maximize |C1|. Then C1 is a maximal
independent set in G and in particular, with H := G − C1, we have χ(H) = χ(G) − 1 =
∆ = ∆(H) + 1 ≥ 4. By minimality of |G|, we get K∆ ⊆ H. But {{v} , C2, . . . , C∆} is a
∆-coloring of H, so any K∆ in H must contain v and hence w2 and w3, a contradiction.

Therefore G is 3-regular. Since G is not a forest it contains an induced cycle C. Put
T := N(C). Then |T | ≥ 2 since K4 6⊆ G. Take different x, y ∈ T and put Hxy := G−C if x
is adjacent to y and Hxy := (G−C) + xy otherwise. Then, by minimality of |G|, either Hxy

is 3-colorable or adding xy created a K4 in Hxy.
Suppose the former happens. Then we have a 3-coloring of G− C where x and y receive

different colors. We can easily extend this partial coloring to all of G since each vertex of C
has a set of two available colors and some pair of vertices in C get different sets.

Whence adding xy created a K4, call it A, in Hxy. We conclude that T is independent and
each vertex in T has exactly one neighbor in C. Hence |T | ≥ |C| ≥ 3. Pick z ∈ T − {x, y}.
Then x is contained in a K4, call it B, in Hxz. Since d(x) = 3, we must have A− {x, y} =
B − {x, z}. But then any w ∈ A− {x, y} has degree at least 4, a contradiction. �

We note that the reduction to the cubic case is an immediate consequence of more general
lemmas on hitting all maximum cliques with an independent set (see [4], [6] and [3]). H.
Tverberg pointed out that this reduction was also demonstrated in his paper [7].
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