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1 Introduction

The federal prison system is collapsing, due in part to inefficient resource
management. You have recently been hired as an efficiency expert by one of
the large private firms heading the privatization of the prison system. Your
first task is to design new, cheap prisons that will minimize inmate fighting.
Cell walls are expensive, so you decide to replace the many two-person cells
with a few giant cells able to handle arbitrarily many inmates. But you also
need to minimize inmate fighting and the only data you have is which inmates
have fought with each other in the past. Without further information, the
best you can do is to not put inmates who have fought before into the same
cell. So how many of these massive cells are you going to need?

As a first pass, you imagine lining the inmates up and having them enter the
first cell they can without encountering one of their former rivals. You realize
that the worst case that could happen is if a given inmate was behind all of
his rivals and all of them went into different cells. So, if ∆ is the maximum
number of inmates a given inmate has fought with, then you will need at most
∆ + 1 cells. But cells cost money, can you do better? Is there always a way
to put the inmates into ∆ cells? You quickly see that this won’t be possible
if there is a group of ∆ + 1 inmates who have all fought one another or if ∆
is two and there is an odd number of inmates that can be arranged in a circle
so that each has fought both and only his neighbors.

After a few days of hard thought, you are able to prove that these are the
only obstructions to using ∆ cells (Brooks 1941 [8]). Usually ∆ is at least three
and there is no such clique of ∆ + 1 inmates who have all fought one another,
so using ∆ cells trades a little possibility of fighting for a large savings in cost.

∗The author of the prospectus and prospectus itself are, of course, imaginary. Neverthe-
less, it is clear that such persons as the writer of this prospectus not only may but positively
must, exist—given the necessity of mathematical truth.
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And yet you aren’t satisfied, how much better can you do? What obstruc-
tions are there to using ∆ − 1 cells and do they occur infrequently? After
working on this for a long time, you find obstructions other than large cliques
for all ∆ up to eight (see Figure 1 for an example) but your construction tech-
niques all fail for ∆ at least nine, so you conjecture that the only obstructions
in this case are the ∆ cliques (Borodin and Kostochka 1977 [7]).

Figure 1: A group of prisoners that cannot be put into ∆− 1 cells.

Even though you suspect the conjecture to be true, you can’t be sure
there isn’t some often occurring arrangement of prisoners with ∆ at least nine
that you haven’t considered. However, there is a little more structure in your
data—you notice that, in all cases, the most experienced fighters (the ones
who have fought with ∆ others) have not fought with each other. And behold,
assuming that none of the most experienced fighters have fought each other,
you are able to prove that for ∆ at least seven the only obstruction to using
∆− 1 cells is a clique of ∆ inmates (Kierstead and Kostochka 2009 [27]).

Throughout the course of your work you discover that there is a whole field,
called Graph Coloring, which does research into such problems. In fact, in your
latest proof you used a few high-tech tools due to Gallai [19], Stiebitz [58] and
Alon-Tarsi [3]. The proof technique naturally failed for ∆ equal to six, but you
conjecture to yourself that it must hold (Kierstead and Kostochka 2009 [27]),
so you need different tools. After much searching, you find the needed tool in
an obscure Russian text (Mozhan 1983 [41]) and give a technical algorithmic
proof for the ∆ = 6 case (Rabern 2010 [51]). Actually, you prove a bit more—
as long as there aren’t cliques of size around ∆

2
among the most experienced

fighters, you can use ∆− 1 cells.
What about when ∆ = 5? By refining the algorithmic method you are

able to prove that, in this case, there is only one obstruction (see Figure 2),
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Figure 2: A group of prisoners that cannot be put into ∆− 1 cells.

besides a ∆ clique, to using ∆− 1 cells (Kostochka, Rabern and Stiebitz 2011
[35]).

Eventually, you become so obsessed with this problem that you decide
to quit your job and learn all you can about this field of Graph Coloring.
Moreover, you decide to adopt that field’s parlance in place of all your cell and
prisoner talk and write this prospectus using Graph Theory terminology and
notation.

2 A short history

Here we collect statements of the results and conjectures that have bearing
on this inquiry woven together with some historical remarks and our improve-
ments. The first non-trivial result about coloring graphs with around ∆ colors
is Brooks’ theorem from 1941.

Theorem 2.1 (Brooks [8]). Every graph with ∆ ≥ 3 satisfies χ ≤ max{ω,∆}.

In 1977, Borodin and Kostochka conjectured that a similar result holds for
∆ − 1 colorings. Counterexamples exist showing that the ∆ ≥ 9 condition is
tight.

Conjecture 2.2 (Borodin and Kostochka [7]). Every graph with ∆ ≥ 9 sat-
isfies χ ≤ max{ω,∆− 1}.

Note that another way of stating this is that for ∆ ≥ 9, the only obstruction
to (∆− 1)-coloring is a K∆. In the same paper, Borodin and Kostochka prove
the following weaker statement.

Theorem 2.3 (Borodin and Kostochka [7]). Every graph satisfying χ ≥ ∆ ≥ 7
contains a Kb∆+1

2 c.

The proof is quite simple once you have a decomposition lemma of Lovász
from the 1960’s [38].
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Lemma 2.4 (Lovász [38]). Let G be a graph and r1, . . . , rk ∈ N such that∑k
i=1 ri ≥ ∆(G) + 1 − k. Then V (G) can be partitioned into sets V1, . . . , Vk

such that ∆(G[Vi]) ≤ ri for each i ∈ [k].

Proof. For a partition P := (V1, . . . , Vk) of V (G) let

f(P ) :=
k∑
i=1

(‖G[Vi]‖ − ri |Vi|) .

Let P := (V1, . . . , Vk) be a partition of V (G) minimizing f(P ). Suppose there
is i ∈ [k] and x ∈ Vi with dVi(x) > ri. Since

∑k
i=1 ri ≥ ∆(G) + 1 − k, there

is some j 6= i such that dVj(x) ≤ rj and thus moving x from Vi to Vj gives
a new partition violating minimality of f(P ). Hence ∆(G[Vi]) ≤ ri for each
i ∈ [k].

Now to prove Borodin and Kostochka’s result, let G be a graph with χ ≥
∆ ≥ 7 and use r1 :=

⌈
∆−1

2

⌉
and r2 :=

⌊
∆−1

2

⌋
in Lovász’s lemma to get a

partition (V1, V2) of V (G) with ∆(G[Vi]) ≤ ri for each i ∈ [2]. Since r1 + r2 =
∆ − 1 and χ ≥ ∆, it must be that χ(G[Vi]) ≥ ri + 1 for some i ∈ [2]. But
∆ ≥ 7, so ri ≥ 3 and hence by Brooks’ theorem G[Vi] contains a Kb∆+1

2 c.
A decade later, Catlin [10] showed that bumping the ∆(G)+1 to ∆(G)+2

allowed for shuffling vertices from one partition set to another and thereby
proving stronger decomposition results. A few years later Kostochka [34] mod-
ified Catlin’s algorithm to show that every triangle-free graph G can be colored
with at most 2

3
∆(G) + 2 colors. In [50], we generalized Kostochka’s modifica-

tion to prove the following.

Lemma 4.7 (Rabern [50]). Let G be a graph and r1, . . . , rk ∈ N such that∑k
i=1 ri ≥ ∆(G)+2−k. Then V (G) can be partitioned into sets V1, . . . , Vk such

that ∆(G[Vi]) ≤ ri and G[Vi] contains no incomplete ri-regular components for
each i ∈ [k].

Setting k =
⌈

∆(G)+2
3

⌉
and ri = 2 for each i gives a slightly more general

form of Kostochka’s triangle-free coloring result.

Corollary 4.8 (Rabern [50]). The vertex set of any graph G can be partitioned

into
⌈

∆(G)+2
3

⌉
sets, each of which induces a disjoint union of triangles and

paths.

For coloring, this actually gives the bound χ(G) ≤ 2
⌈

∆(G)+2
3

⌉
for triangle

free graphs. To get 2
3
∆(G)+2, just use rk = 0 when ∆ ≡ 2(mod 3). Similarly,

for any r ≥ 2, setting k =
⌈

∆(G)+2
r+1

⌉
and ri = r for each i gives the following.

Corollary 4.9 (Rabern [50]). Fix r ≥ 2. The vertex set of any Kr+1-free graph

G can be partitioned into
⌈

∆(G)+2
r+1

⌉
sets each inducing an (r − 1)-degenerate

subgraph with maximum degree at most r.
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In fact, we proved a lemma stronger than Lemma 4.7 allowing us to forbid a
larger class of components coming from any so-called r-permissible collection.
In section 4.2 we will explore a result that both simplifies and generalizes this
latter result.

Also in the 1980’s, Kostochka proved the following using a complicated
recoloring argument together with a technique for reducing ∆ in a counterex-
ample based on hitting every maximum clique with an independent set.

Theorem 2.5 (Kostochka [33]). Every graph satisfying χ ≥ ∆ contains a
K∆−28.

Kostochka [33] proved the following result which shows that graphs having
clique number sufficiently close to their maximum degree contain an indepen-
dent set hitting every maximum clique. In [49] we improved the antecedent to
ω ≥ 3

4
(∆ + 1). Finally, King [30] made the result tight.

Lemma 5.1 (Kostochka [33]). If G is a graph satisfying ω ≥ ∆ + 3
2
−
√

∆,
then G contains an independent set I such that ω(G− I) < ω(G).

Lemma 5.3 (Rabern [49]). If G is a graph satisfying ω ≥ 3
4
(∆ + 1), then G

contains an independent set I such that ω(G− I) < ω(G).

Lemma 5.5 (King [30]). If G is a graph satisfying ω > 2
3
(∆ + 1), then G

contains an independent set I such that ω(G− I) < ω(G).

If G is a vertex critical graph satisfying ω > 2
3
(∆ + 1) and we expand the

independent set I produced by Lemma 5.5 to a maximal independent set M
and removeM fromG, we see that ∆(G−M) ≤ ∆(G)−1, χ(G−M) = χ(G)−1
and ω(G−M) = ω(G)− 1. Using this, the proof of many coloring results can
be reduced to the case of the smallest ∆ for which they work. In Section 5,
we give three such applications.

A little after Kostochka proved his bound, Mozhan [41] used a function min-
imization and vertex shuffling procedure different than, but related to Catlin’s,
to prove the following.

Theorem 2.6 (Mozhan [41]). Every graph satisfying χ ≥ ∆ ≥ 10 contains a
Kb 2∆+1

3 c.

Finally, in his dissertation Mozhan proved the following. We don’t know
the method of proof as we were unable to obtain a copy of his dissertation.
However, we suspect the method is a more complicated version of the above
proof.

Theorem 2.7 (Mozhan). Every graph satisfying χ ≥ ∆ ≥ 31 contains a
K∆−3.

In [51], we used part of Mozhan’s method to prove the following result. For
a graph G let H(G) be the subgraph of G induced on the vertices of degree at
least χ(G).
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Theorem 2.8 (Rabern [51]). Kχ(G) is the only vertex critical graph G with

χ(G) ≥ ∆(G) ≥ 6 and ω(H(G)) ≤
⌊

∆(G)
2

⌋
− 2.

Setting ω(H(G)) = 1 proved a conjecture of Kierstead and Kostochka [27].

Corollary 2.9 (Rabern [51]). Kχ(G) is the only vertex critical graph G with
χ(G) ≥ ∆(G) ≥ 6 such that H(G) is edgeless.

In joint work with Kostochka and Stiebitz [35], we generalized and im-
proved this result, again using Mozhan’s technique. In section 4.1, we will
improve these results further and simplify the proofs by using Catlin’s vertex
shuffling algorithm in place of Mozhan’s.

In 1999, Reed used probabilistic methods to prove that the Borodin-Kostochka
conjecture holds for graphs with very large maximum degree.

Theorem 2.10 (Reed [55]). Every graph satisfying χ ≥ ∆ ≥ 1014 contains a
K∆.

A lemma from Reed’s proof of the above theorem is generally useful.

Lemma 2.11 (Reed [55]). Let G be a critical graph satisfying χ = ∆ ≥ 9
having the minimum number of vertices. If H is a K∆−1 in G, then any vertex
in G − H has at most 4 neighbors in H. In particular, the K∆−1’s in G are
pairwise disjoint.

In section 8, we improve this lemma by showing that under the same hy-
potheses, any vertex in G−H has at most 1 neighbor in H. Moreover, we lift
the result out of the context of a minimal counterexample to graphs satisfying
a certain criticality condition—we refer to such graphs as mules. This allows
meaningful results to be proved for values of ∆ less than 9. Also in section
8, we prove that the following, a priori weaker, conjecture is equivalent to the
Borodin-Kostochka conjecture.

Conjecture 2.12 (Rabern 2010). If G is a graph with χ = ∆ = 9, then
K3 ∗K6 ⊆ G.

At the core of these results are the list coloring lemmas proved in section 6.
There we classify graphs of the form A ∗B which are not f -choosable where
f(v) := d(v) − 1 for each vertex v. In section 7 we use these list coloring
results together with Chudnovsky and Seymour’s decomposition theorem for
claw-free graphs [14] and our proof in [48] of the Borodin-Kostochka conjecture
for line graphs of multigraphs to prove the conjecture for claw-free graphs.

Theorem 2.13 (Rabern 2011). Every claw-free graph with ∆ ≥ 9 satisfies
χ ≤ max {ω,∆− 1}.
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3 Overview

Our approach to coloring a graph with around ∆ colors has two main steps.

1. Construct a large dense subgraph H.

2. Coloring the rest of the graph inductively leaves a list assignment on H.
Try to color H from these lists.

For step (1), we have used two different constructions, both involve mini-
mizing edges in some partition and then shuffling vertices around. Originally
(in [51] and [43]), we used the construction of Mozhan [41]; however, in this in-
quiry we will replace this with a construction that can be attributed to Catlin
[10]. This will be done in section 4.

For step (2), we do a lot of work in section 6 to prove results on coloring
graphs with almost degree sized lists. Additionally, in section 8 we use mini-
mality of a counterexample to show that the resulting list coloring has special
properties allowing us to finish the coloring.

Another important tool, developed in section 5, allows us to reduce ∆ in
minimum counterexamples to small, sometimes manageable values.

4 Doing the vertex shuffle

Let G be the collection of all finite simple connected graphs. For a graph
G, x ∈ V (G) and D ⊆ V (G) we use the notation ND(x) := N(x) ∩ D and
dD(x) := |ND(x)|. Let CG be the components of G and c(G) := |CG|. If
h : G → N, we define h for any graph as h(G) :=

∑
D∈CG h(D). An ordered

partition of G is a sequence (V1, V2, . . . , Vk) where the Vi are pairwise disjoint
and cover V (G). Note that we allow the Vi to be empty. When there is no
possibility of ambiguity, we call such a sequence a partition.

4.1 Coloring when the high vertex subgraph has small cliques

In this section we generalize all of the results on coloring graphs with restric-
tions on the high vertex subgraph from [51] and [35]. Moreover, our proofs here
are simpler and much easier to visualize thanks to using the vertex shuffling
procedure of Catlin [10] in place of that of Mozhan [41]. The proof technique
can be viewed as a generalization of that of Bollobás and Manvel [5]. We give
a non-standard proof of Brooks’ theorem to illustrate the technique.

4.1.1 Brooks’ theorem

Let G be a graph. A partition P := (V0, V1) of V (G) will be called normal
if it achieves the minimum value of (∆(G) − 1) ‖V0‖ + ‖V1‖. Note that if P
is a normal partition, then ∆(G[V0]) ≤ 1 and ∆(G[V1]) ≤ ∆(G) − 1. The
P -components of G are the components of G[Vi] for i ∈ [2]. A P -component
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is called an obstruction if it is a K2 in G[V0] or a K∆(G) in G[V1] or an odd
cycle in G[V1] when ∆(G) = 3. A path x1x2 · · ·xk is called P -acceptable if
x1 is contained in an obstruction and for different i, j ∈ [k], xi and xj are
in different P -components. For a subgraph H of G and x ∈ V (G), we put
NH(x) := N(x) ∩ V (H).

Lemma 4.1. Let G be a graph with ∆(G) ≥ 3. If G doesn’t contain K∆(G)+1,
then V (G) has an obstruction-free normal partition.

Proof. Suppose the lemma is false. Among the normal partitions having the
minimum number of obstructions, choose P := (V0, V1) and a maximal P -
acceptable path x1x2 · · · xk so as to minimize k.

Let A and B be the P -components containing x1 and xk respectively. Put
X := NA(xk). First, suppose |X| = 0. Then moving x1 to the other part
of P creates another normal partition P ′ having the minimum number of
obstructions. But x2x3 · · ·xk is a maximal P ′-acceptable path, violating the
minimality of k. Hence |X| ≥ 1.

Pick z ∈ X. Moving z to the other part of P destroys the obstruction A, so
it must create an obstruction containing xk and hence B. Since obstructions
are complete graphs or odd cycles, the only possibility is that {z} ∪ V (B)
induces an obstruction. Put Y := NB(z). Then, since obstructions are regular,
NB(x) = Y for all x ∈ X and |Y | = δ(B) + 1. In particular, X is joined to Y
in G.

Suppose |X| ≥ 2. Then, similarly to above, switching z and xk in P
shows that {xk} ∪ V (A − z) induces an obstruction. Since obstructions are
regular, we must have |NA−z(xk)| = ∆(A) and hence |X| ≥ ∆(A) + 1. Thus
|X ∪ Y | = ∆(A) + δ(B) + 2 = ∆(G) + 1. Suppose X is not a clique and pick
nonadjacent v1, v2 ∈ X. It is easily seen that moving v1, v2 and then xk to their
respective other parts violates normality of P . Hence X is a clique. Suppose
Y is not a clique and pick nonadjacent w1, w2 ∈ Y . Pick z′ ∈ X − {z}. Now
moving z and then w1, w2 and then z′ to their respective other parts again
violates normality of P . Hence Y is a clique. But X is joined to Y , so X ∪ Y
induces a K∆(G)+1 in G, a contradiction.

Hence we must have |X| = 1. Suppose X 6= {x1}. First, suppose A is
K2. Then moving z to the other part of P creates another normal partition Q
having the minimum number of obstructions. In Q, xkxk−1 · · ·x1 is a maximal
Q-acceptable path since the Q-components containing x2 and xk contain all
of x1’s neighbors in that part. Running through the above argument using Q
gets us to the same point with A not K2. Hence we may assume A is not K2.

Move each of x1, x2, . . . , xk in turn to their respective other parts of P .
Then the obstruction A was destroyed by moving x1 and for 1 ≤ i < k,
the obstruction created by moving xi was destroyed by moving xi+1. Thus,
after the moves, xk is contained in an obstruction. By minimality of k, it
must be that {xk} ∪ V (A − x1) induces an obstruction and hence |X| ≥ 2, a
contradiction.
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Therefore X = {x1}. But then moving x1 to the other part of P creates an
obstruction containing both x2 and xk. Hence k = 2. Since x1x2 is maximal,
x2 can have no neighbor in the other part besides x1. But now switching x1

and x2 in P creates a partition violating the normality of P .

Theorem 4.2 (Brooks 1941). If a connected graph G is not complete and not
an odd cycle, then χ(G) ≤ ∆(G).

Proof. Suppose not and choose a counterexample G minimizing ∆(G). Plainly,
∆(G) ≥ 3. By Lemma 4.1, V (G) has an obstruction-free normal partition
(V0, V1). Since G[V0] has maximum degree at most one and contains no K2’s,
we see that V0 is independent. Since G[V1] is obstruction-free, applying min-
imality of ∆(G) gives χ(G[V1]) ≤ ∆(G[V1]) < ∆(G). Hence χ(G) ≤ ∆(G), a
contradiction.

4.1.2 The generalizations

For a vector r ∈ Nk we take the coordinate labeling r = (r1, r2, . . . , rk) as
convention. Define the weight of a vector r ∈ Nk as w (r) :=

∑
i∈[k] ri. Let

G be a graph. An r-partition of G is a partition P := (V1, . . . , Vk) of V (G)
minimizing

f(P ) :=
∑
i∈[k]

(‖G[Vi]‖ − ri |Vi|) .

It is a fundamental result of Lovász [38] that if P := (V1, . . . , Vk) is an r-
partition of G with w (r) ≥ ∆(G) + 1− k, then ∆(G[Vi]) ≤ ri for each i ∈ [k].
The proof is simple: if there is a vertex in a part violating the condition, then
there is some part it can be moved to that decreases f(P ). As Catlin [10]
showed, with the stronger condition w (r) ≥ ∆(G) + 2− k, a vertex of degree
ri in G[Vi] can always be moved to some other part while maintaining f(P ).
Since G is finite, a well-chosen sequence of such moves must always wrap back
on itself. Both Catlin [10], and independently Bollobás and Manvel [5] used
such a technique to prove coloring results. We generalize these techniques by
taking into account the degree in G of the vertex to be moved—a vertex of
degree less than the maximum needs a weaker condition on w (r) to be moved.

For an induced subgraph H of G, define δG(H) := minv∈V (H) dG(v). We
also need the following notion of a movable subgraph.

Definition 4.1. Let G be a graph and H an induced subgraph of G. For
d ∈ N, the d-movable subgraph of H with respect to G is the subgraph Hd of
G induced on

{v ∈ V (H) | dG(v) = d and H − v is connected} .

We prove two partition lemmas of similar form. All of our coloring results
will follow from the first lemma, the second lemma is a degeneracy result from
which the main lemma of Bollobás and Manvel [5] follows. For unification
purposes, define a t-obstruction as an odd cycle when t = 2 and a Kt+1 when
t ≥ 3.
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Theorem 4.3 (Rabern [53]). Let G be a graph, k, d ∈ N with k ≥ 2 and
r ∈ Nk

≥2. If w (r) ≥ max {∆(G) + 1− k, d}, then at least one of the following
holds:

1. there exists an r-partition P := (V1, . . . , Vk) of G such that if C is an
ri-obstruction in G[Vi], then δG(C) ≥ d and Cd is edgeless.

2. w (r) = d and G contains an induced subgraph Q with |Q| = d+ 1 which
can be partitioned into k cliques F1, . . . , Fk where

(a) |F1| = r1 + 1, |Fi| = ri for i ≥ 2,

(b)
∣∣F d

1

∣∣ ≥ 2,
∣∣F d

i

∣∣ ≥ 1 for i ≥ 2,

(c) for i ∈ [k], each v ∈ V (F d
i ) is universal in Q;

Theorem 4.4 (Rabern [53]). Let G be a graph, k, d ∈ N with k ≥ 2 and
r ∈ Nk

≥1 where at most one of the ri is one. If w (r) ≥ max {∆(G) + 1− k, d},
then at least one of the following holds:

1. there exists an r-partition P := (V1, . . . , Vk) of G such that if C is an
ri-regular component of G[Vi], then δG(C) ≥ d and there is at most one
x ∈ V (Cd) with dCd(x) ≥ ri − 1. Moreover, P can be chosen so that
either:

(a) for all i ∈ [k] and ri-regular component C of G[Vi], we have
∣∣Cd
∣∣ ≤

1; or,

(b) for some i ∈ [k] and some ri-regular component C of G[Vi], there
is x ∈ V (Cd) such that {y ∈ NC(x) | dG(y) = d} is a clique.

2. w (r) = d and G contains a Kt ∗Ed+1−t where t ≥ d + 1 − k, for each
v ∈ V (Kt) we have dG(v) = d and for each v ∈ V (Ed+1−t) we have
dG(v) > d; or,

From Theorem 4.3, we get the following two coloring results. For a vertex
critical graph G, call v ∈ V (G) low if d(v) = χ(G)− 1 and high otherwise. Let
H(G) be the subgraph of G induced on the high vertices of G.

Corollary 4.5 (Rabern [53]). Let G be a vertex critical graph with χ(G) =

∆(G) + 2 − k for some k ≥ 2. If k ≤ χ(G)−1
ω(H(G))+1

, then G contains an induced

subgraph Q with |Q| = χ(G) which can be partitioned into k cliques F1, . . . , Fk
where

1. |F1| = χ(G)− (k − 1)(ω(H(G)) + 1), |Fi| = ω(H(G)) + 1 for i ≥ 2;

2. for each i ∈ [k], Fi contains at least |Fi| − ω(H(G)) low vertices which
are all universal in Q.

Corollary 4.6 (Rabern [53]). Let G be a vertex critical graph with χ(G) ≥
∆(G) + 1− p ≥ 4 for some p ∈ N. If ω(H(G)) ≤ χ(G)+1

p+1
− 2, then G = Kχ(G)

or G = O5.
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4.2 Destroying incomplete components in vertex partitions

In [34] Kostochka modified an algorithm of Catlin [10] to show that every
triangle-free graph G can be colored with at most 2

3
∆(G) + 2 colors. In fact,

his modification proves that the vertex set of any triangle-free graph G can be

partitioned into
⌈

∆(G)+2
3

⌉
sets, each of which induces a disjoint union of paths.

In [50] we generalized this as follows.

Lemma 4.7 (Rabern [50]). Let G be a graph and r1, . . . , rk ∈ N such that∑k
i=1 ri ≥ ∆(G)+2−k. Then V (G) can be partitioned into sets V1, . . . , Vk such

that ∆(G[Vi]) ≤ ri and G[Vi] contains no incomplete ri-regular components for
each i ∈ [k].

Setting k =
⌈

∆(G)+2
3

⌉
and ri = 2 for each i gives a slightly more general

form of Kostochka’s theorem.

Corollary 4.8 (Rabern [50]). The vertex set of any graph G can be partitioned

into
⌈

∆(G)+2
3

⌉
sets, each of which induces a disjoint union of triangles and

paths.

For coloring, this actually gives the bound χ(G) ≤ 2
⌈

∆(G)+2
3

⌉
for triangle

free graphs. To get 2
3
∆(G)+2, just use rk = 0 when ∆ ≡ 2(mod 3). Similarly,

for any r ≥ 2, setting k =
⌈

∆(G)+2
r+1

⌉
and ri = r for each i gives the following.

Corollary 4.9 (Rabern [50]). Fix r ≥ 2. The vertex set of any Kr+1-free graph

G can be partitioned into
⌈

∆(G)+2
r+1

⌉
sets each inducing an (r − 1)-degenerate

subgraph with maximum degree at most r.

For the purposes of coloring it is more economical to split off ∆ + 2 − (r +
1)
⌊

∆+2
r+1

⌋
parts with rj = 0.

Corollary 4.10 (Rabern [50]). Fix r ≥ 2. The vertex set of any Kr+1-

free graph G can be partitioned into
⌊

∆(G)+2
r+1

⌋
sets each inducing an (r − 1)-

degenerate subgraph with maximum degree at most r and ∆(G) + 2 − (r +

1)
⌊

∆(G)+2
r+1

⌋
independent sets. In particular, χ(G) ≤ ∆(G) + 2−

⌊
∆(G)+2
r+1

⌋
.

For r ≥ 3, the bound on the chromatic number is only interesting in that
its proof does not rely on Brooks’ Theorem. Lemma 4.7 is of the same form
as Lovász’s Lemma 2.4, but it gives a more restrictive partition at the cost of
replacing ∆(G) + 1 with ∆(G) + 2. For r ≥ 3, combining Lovász’s Lemma 2.4
with Brooks’ theorem gives the following better bound for a Kr+1-free graph
G (first proved in [7], [11] and [37]):

χ(G) ≤ ∆(G) + 1−
⌊

∆(G) + 1

r + 1

⌋
.
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4.2.1 A generalization

Here we prove a generalization of Lemma 4.7.

Definition 4.2. For h : G → N and G ∈ G, a vertex x ∈ V (G) is called
h-critical in G if G− x ∈ G and h(G− x) < h(G).

Definition 4.3. For h : G → N and G ∈ G, a pair of vertices {x, y} ⊆ V (G)
is called an h-critical pair in G if G− {x, y} ∈ G and x is h-critical in G− y
and y is h-critical in G− x.

Definition 4.4. For r ∈ N a function h : G → N is called an r-height function
if it has each of the following properties:

1. if h(G) > 0, then G contains an h-critical vertex x with d(x) ≥ r;

2. if G ∈ G and x ∈ V (G) is h-critical with d(x) ≥ r, then h(G − x) =
h(G)− 1;

3. if G ∈ G and x ∈ V (G) is h-critical with d(x) ≥ r, then G contains an
h-critical vertex y 6∈ {x} ∪N(x) with d(y) ≥ r;

4. if G ∈ G and {x, y} ⊆ V (G) is an h-critical pair in G with dG−y(x) ≥ r
and dG−x(y) ≥ r, then there exists z ∈ N(x) ∩N(y) with d(z) ≥ r + 1.

Lemma 4.11. Let G be a graph and r1, . . . , rk ∈ N such that
∑k

i=1 ri ≥
∆(G) + 2− k. If hi is an ri-height function for each i ∈ [k], then V (G) can be
partitioned into sets V1, . . . , Vk such that for each i ∈ [k], ∆(G[Vi]) ≤ ri and
hi(D) = 0 for each component D of G[Vi].

For each r ∈ N, it is easy to see that the function hr : G → N defined as follows
is an r-height function:

hr(G) :=

{
1 G is incomplete and r-regular;

0 otherwise.

Applying Lemma 4.11 with these height functions proves Lemma 4.7. Other
height functions exist, but we don’t yet have a sense of their ubiquity or lack
thereof.

Proof of Lemma 4.11. For a partition P := (V1, . . . , Vk) of V (G) let

f(P ) :=
k∑
i=1

(‖G[Vi]‖ − ri |Vi|) ,

c(P ) :=
k∑
i=1

c(G[Vi]),

h(P ) :=
k∑
i=1

hi(G[Vi]).

12



Let P := (V1, . . . , Vk) be a partition of V (G) minimizing f(P ), and subject to
that c(P ), and subject to that h(P ).

Let i ∈ [k] and x ∈ Vi with dVi(x) ≥ ri. Since
∑k

i=1 ri ≥ ∆(G)+2−k there is
some j 6= i such that dVj(x) ≤ rj. Moving x from Vi to Vj gives a new partition
P ∗ with f(P ∗) ≤ f(P ). Note that if dVi(x) > ri we would have f(P ∗) < f(P )
contradicting the minimality of P . This proves that ∆(G[Vi]) ≤ ri for each
i ∈ [k].

Now suppose that for some i1 there is a component A1 of G[Vi1 ] with
hi1(A1) > 0. Put P1 := P and V1,i := Vi for i ∈ [k]. By property 1 of height
functions, we have an hi1-critical vertex x1 ∈ V (A1) with dA1(x1) ≥ ri1 . By
the above we have i2 6= i1 such that moving x1 from V1,i1 to V1,i2 gives a new
partition P2 := (V2,1, V2,2, . . . , V2,k) where f(P2) = f(P1). By the minimality
of c(P1), x1 is adjacent to only one component C2 in G[V1,i2 ]. Let A2 :=
G[V (C2) ∪ {x1}]. Since x1 is hi1-critical, by the minimality of h(P1), it must
be that hi2(A2) > hi2(C2). By property 2 of height functions we must have
hi2(A2) = hi2(C2) + 1. Hence h(P2) is still minimum. Now, by property 3 of
height functions, we have an hi2-critical vertex x2 ∈ V (A2)− ({x1} ∪NA2(x1))
with dA2(x2) ≥ ri2 .

Continue on this way to construct sequences i1, i2, . . ., A1, A2, . . ., P1, P2, P3, . . .
and x1, x2, . . .. Since G is finite, at some point we will need to reuse a leftover
component; that is, there is a smallest t such that At+1−xt = As−xs for some
s < t. In particular, {xs, xt+1} is an his-critical pair inQ := G [{xt+1} ∪ V (As)]
where dQ−xt+1(xs) ≥ ris and dQ−xs(xt+1) ≥ ris . Thus, by property 4 of height
functions, we have z ∈ NQ(xs) ∩NQ(xt+1) with dQ(z) ≥ ris + 1.

We now modify Ps to contradict the minimality of f(P ). At step t+ 1, xt
was adjacent to exactly ris vertices in Vt+1,is . This is what allowed us to move
xt into Vt+1,is . Our goal is to modify Ps so that we can move xt into the is
part without moving xs out. Since z is adjacent to both xs and xt, moving z
out of the is part will then give us our desired contradiction.

So, consider the set X of vertices that could have been moved out of Vs,is
between step s and step t + 1; that is, X := {xs+1, xs+2, . . . , xt−1} ∩ Vs,is .
For xj ∈ X, since dAj

(xj) ≥ ris and xj is not adjacent to xj−1 we see that
dVs,is (xj) ≥ ris . Similarly, dVs,it (xt) ≥ rit . Also, by the minimality of t, X is
an independent set in G. Thus we may move all elements of X out of Vs,is to
get a new partition P ∗ := (V∗,1, . . . , V∗,k) with f(P ∗) = f(P ).

Since xt is adjacent to exactly ris vertices in Vt+1,is and the only possible
neighbors of xt that were moved out of Vs,is between steps s and t + 1 are
the elements of X, we see that dV∗,is (xt) = ris . Since dV∗,it (xt) ≥ rit we can
move xt from V∗,it to V∗,is to get a new partition P ∗∗ := (V∗∗,1, . . . , V∗∗,k) with
f(P ∗∗) = f(P ∗). Now, recall that z ∈ V∗∗,is . Since z is adjacent to xt we have
dV∗∗,is (z) ≥ ris+1. Thus we may move z out of V∗∗,is to get a new partition P ∗∗∗

with f(P ∗∗∗) < f(P ∗∗) = f(P ). This contradicts the minimality of f(P ).
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5 Reducing maximum degree

5.1 Hitting all maximum cliques

As part of his proof that every graph with χ ≥ ∆ contains a K∆−28, Kostochka
proved the following lemma.

Lemma 5.1 (Kostochka [33]). If G is a graph satisfying ω ≥ ∆ + 3
2
−
√

∆,
then G contains an independent set I such that ω(G− I) < ω(G).

To talk about the proof we first need a definition.

Clique Graph. Let G be a graph. For a collection of cliques Q in G, let XQ
be the intersection graph of Q. That is, the vertex set of XQ is Q and there
is an edge between Q1 6= Q2 ∈ Q iff Q1 and Q2 intersect.

Kostochka’s proof proceeded in two stages. First show that the vertices
in each component of the clique graph have a large intersection. Then find
an independent transversal of these intersections. Such a transversal is an
independent set hitting every maximum clique. Kostochka used a custom
method to find a transversal. In [49], we applied the following lemma of Haxell
[23] (proved long after Kostochka’s paper) to find the independent transversal.

Lemma 5.2. Let H be a graph and V1∪· · ·∪Vr a partition of V (H). Suppose
that |Vi| ≥ 2∆(H) for each i ∈ [r]. Then H has an independent set {v1, . . . , vn}
where vi ∈ Vi for each i ∈ [r].

Finding the independent transversal using this lemma gives the following.

Lemma 5.3 (Rabern [49]). If G is a graph satisfying ω ≥ 3
4

(∆ + 1), then G
contains an independent set I such that ω(G− I) < ω(G).

Aharoni, Berger and Ziv [1] showed that Haxell’s proof actually gets more
than Lemma 5.2. From their extension, King [30] proved the following lopsided
version of Haxell’s lemma.

Lemma 5.4 (King [30]). Let G be a graph partitioned into r cliques V1, . . . , Vr.
If there exists k ≥ 1 such that for each i every v ∈ Vi has at most min{k, |Vi|−
k} neighbors outside Vi, then G contains an independent set with r vertices.

Using this gives the best possible form of the lemma.

Lemma 5.5 (King [30]). If G is a graph satisfying ω > 2
3
(∆ + 1), then G

contains an independent set I such that ω(G− I) < ω(G).
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5.1.1 A simple proof of Kostochka’s first stage

The proofs for Kostochka’s first stage can be made much simpler than the
originals and we do so here.

Lemma 5.6 (Hajnal [22]). Let G be a graph and Q a collection of maximum
cliques in G. Then ∣∣∣⋃Q∣∣∣+

∣∣∣⋂Q∣∣∣ ≥ 2ω(G).

Proof. Suppose the lemma is false and let Q be a counterexample with |Q|
minimal. Put r := |Q| and say Q = {Q1, . . . , Qr}. Consider the set W :=
(Q1 ∩

⋃r
i=2 Qi) ∪

⋂r
i=2Qi. Plainly, W is a clique. Thus we may derive a

contradiction as follows.

ω(G) ≥ |W |

=

∣∣∣∣∣(Q1 ∩
r⋃
i=2

Qi) ∪
r⋂
i=2

Qi

∣∣∣∣∣
=

∣∣∣∣∣Q1 ∩
r⋃
i=2

Qi

∣∣∣∣∣+

∣∣∣∣∣
r⋂
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣
r⋂
i=1

Qi ∩
r⋃
i=2

Qi

∣∣∣∣∣
= |Q1|+

∣∣∣∣∣
r⋃
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣
r⋃
i=1

Qi

∣∣∣∣∣+

∣∣∣∣∣
r⋂
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣
r⋂
i=1

Qi

∣∣∣∣∣
= ω(G) +

∣∣∣∣∣
r⋃
i=2

Qi

∣∣∣∣∣+

∣∣∣∣∣
r⋂
i=2

Qi

∣∣∣∣∣−
∣∣∣∣∣
r⋃
i=1

Qi

∣∣∣∣∣−
∣∣∣∣∣
r⋂
i=1

Qi

∣∣∣∣∣
≥ ω(G) + 2ω(G)−

(∣∣∣∣∣
r⋃
i=1

Qi

∣∣∣∣∣+

∣∣∣∣∣
r⋂
i=1

Qi

∣∣∣∣∣
)

> ω(G).

Lemma 5.7 (Kostochka [33]). If Q is a collection of maximum cliques in a
graph G with ω(G) > 2

3
(∆(G) + 1) such that XQ is connected, then ∩Q 6= ∅.

Proof. Suppose not and choose a counterexample Q := {Q1, . . . , Qr} minimiz-
ing r. Plainly, r ≥ 3. Let A be a noncutvertex in XQ and B a neighbor of
A. Put Z := Q− {A}. Then XZ is connected and hence by minimality of r,
∩Z 6= ∅. In particular, |∪Z| ≤ ∆(G) + 1. Hence |∪Q| ≤ |∪Z| + |A−B| ≤
2(∆(G) + 1)− ω(G) < 2ω(G). This contradicts Hajnal’s lemma.

With a little more work we can prove the following generalization of Kos-
tochka’s lemma which has a Helly feel. We won’t use this result here, but it
has some independent interest.

Lemma 5.8. Fix k ≥ 2. Let G be a graph satisfying ω > k+1
2k+1

(∆ + 1). If Q
is a collection of maximum cliques in G such that any k elements of Q have
common intersection, then ∩Q 6= ∅.
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Proof. Suppose not and choose a counterexample Q := {Q1, . . . , Qr} minimiz-
ing r. Plainly, r ≥ k + 1. Put Zi := Q − {Qi}. Then any k elements of Zi
have common intersection and hence by minimality ∩Zi 6= ∅. In particular
∪Zi contains a universal vertex and thus |∪Zi| ≤ ∆(G) + 1. Now, by Hajnal’s
Lemma, |∩Zi| ≥ 2ω(G)− (∆(G) + 1) > 2ω(G)− 2k+1

k+1
ω(G) = 1

k+1
ω(G).

Put m := mini |Qi − ∪Zi|. Note that the ∩Zi are pairwise disjoint since
∩Q = ∅. Thus ∪Q contains the disjoint union of the ∩Zi as well as at least m
vertices in each clique outside the rest. In particular,

|∪Q| ≥ 1

k + 1
ω(G)r +mr ≥ ω(G) + (k + 1)m.

In addition,

|∪Q| ≤ m+ ∆(G) + 1.

Hence,

m ≤ ∆(G) + 1− ω(G)

k
<

1

k + 1
ω(G).

Finally,

|∪Q| ≤ m+ ∆(G) + 1 <
1

k + 1
ω(G) +

2k + 1

k + 1
ω(G) = 2ω(G).

Applying Hajnal’s Lemma gives a contradiction.

5.2 The quintessential reduction example

Reed [54] has conjectured that every graph satisfies

χ ≤
⌈
ω + ∆ + 1

2

⌉
.

If we could always find an independent set whose removal decreased both ω
and ∆, then the conjecture would follow by simple induction since we can give
the independent set a single color and use at most

⌈
ω+∆+1

2

⌉
−1 colors on what

remains. Expanding the independent set given by Lemma 5.5 to a maximal
one shows that this sort of argument goes through when ω > 2

3
(∆ + 1). Thus

a minimum counterexample to Reed’s conjecture satisfies ω ≤ 2
3
(∆ + 1).

5.3 Reducing for Brooks

We can use the facts on hitting maximum cliques to reduce Brooks’ theorem
down to the ∆ = 3 case as follows. Let G be a counterexample to Brooks’
theorem minimizing ∆(G). Suppose ∆(G) ≥ 4. We may assume G is critical.
If ω(G) < ∆(G), then removing any maximal independent set fromG decreases
χ(G) and ∆(G) both by one giving a counterexample with smaller ∆. Hence
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ω(G) ≥ ∆(G). But then ω(G) > 2
3
(∆(G) + 1) and Lemma 5.5 gives us

an independent set I such that ω(G − I) < ω(G). Let M be a maximal
independent set containing I. Then G−M is a counterexample with smaller
∆.

There is also a simple direct proof (not using the hitting maximum cliques
lemmas) that Brooks’ theorem can be reduced to the ∆ = 3 case.

Question. Is there a simple proof (not just specializing a general proof) of
Brooks’ theorem for ∆ = 3?

5.4 Reducing for Borodin-Kostochka

More generally, we can use the facts on hitting maximum cliques to prove the
following reduction lemma.

Definition 5.1. For k, j ∈ N, let Ck,j be the collection of all vertex critical
graphs satisfying χ = ∆ = k and ω < k − j. Put Ck := Ck,0. Note that
Ck,j ⊆ Ck,i for j ≥ i.

Lemma 5.9. Fix k, j ∈ N with k ≥ 3j + 6. If G ∈ Ck,j, then there exists
H ∈ Ck−1,j such that H CG.

Proof. Let G ∈ Ck,j. We first show that there exists a maximal independent
set M such that ω(G −M) < k − (j + 1). If ω(G) < k − (j + 1), then any
maximal independent set will do for M . Otherwise, ω(G) = k− (j+ 1). Since
k ≥ 3j + 6, we have ω(G) = k − (j + 1) > 2

3
(k + 1) = 2

3
(∆(G) + 1). Thus

by Lemma 5.5, we have an independent set I such that ω(G − I) < ω(G).
Expand I to a maximal independent set to get M .

Now χ(G−M) = k− 1 = ∆(G−M), where the last equality follows from
Brooks’ theorem and ω(G −M) < k − (j + 1) ≤ k − 1. Since ω(G −M) <
k − (j + 1), for any (k − 1)-critical induced subgraph H E G −M we have
H ∈ Ck−1,j.

As a consequence we get the result of Kostochka that the Borodin-Kostochka
conjecture can be reduced to the k = 9 case.

Lemma 5.10. Let H be a hereditary graph property. For k ≥ 5, if H∩Ck = ∅,
then H ∩ Ck+1 = ∅. In particular, to prove the Borodin-Kostochka conjecture
it is enough to show that C9 = ∅.

6 List coloring with almost degree sized lists

Let G be a graph. A list assignment to the vertices of G is a function from
V (G) to the finite subsets of N. A list assignment L to G is good if G has a
coloring c where c(v) ∈ L(v) for each v ∈ V (G). It is bad otherwise. We call
the collection of all colors that appear in L, the pot of L. That is Pot(L) :=⋃
v∈V (G) L(v). For a subgraph H of G we write PotH(L) :=

⋃
v∈V (H) L(v).
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For S ⊆ Pot(L), let GS be the graph G [{v ∈ V (G) | L(v) ∩ S 6= ∅}]. We
also write Gc for G{c}. We let B(L) be the bipartite graph that has parts
V (G) and Pot(L) and an edge from v ∈ V (G) to c ∈ Pot(L) iff c ∈ L(v). For
f : V (G)→ N, an f -assignment on G is an assignment L of lists to the vertices
of G such that |L(v)| = f(v) for each v ∈ V (G). We say that G is f -choosable
if every f -assignment on G is good.

6.1 Shrinking the pot

In this section we prove a lemma about bad list assignments with minimum
pot size. Some form of this lemma has appeared independetly in at least two
places we know of—Kierstead [26] and Reed and Sudakov [56]. We will use
this lemma repeatedly in the arguments that follow.

Given a graph G and f : V (G) → N, we have a partial order on the f -
assignments to G given by L < L′ iff |Pot(L)| < |Pot(L′)|. When we talk of
minimal f -assignments, we mean minimal with respect to this partial order.

Lemma 6.1. Let G be a graph and f : V (G) → N. Assume G is not f -
choosable and let L be a minimal bad f -assignment. Assume L(v) 6= Pot(L)
for each v ∈ V (G). Then, for each nonempty S ⊆ Pot(L), any coloring of GS

from L uses some color not in S.

Proof. Suppose not and let ∅ 6= S ⊆ Pot(L) be such that GS has a coloring φ
from L using only colors in S. For v ∈ V (G), let h(v) be the smallest element
of Pot(L) − L(v) (this is well defined by assumption). Pick some c ∈ S and
construct a new list assignment L′ as follows.

L′(v) =


L(v) if v ∈ V (G)− V (GS)
L(v) if v ∈ V (GS) and c 6∈ L(v)

(L(v)− {c}) ∪ {h(v)} if v ∈ V (GS) and c ∈ L(v)

Note that L′ is an f -assignment and Pot(L′) = Pot(L) − {c}. Thus, by
minimality of L, we can properly color G from L′. In particular, we have a
coloring of V (G)−V (GS) from L using no color from S. We can complete this
to a coloring of G from L using φ. This contradicts the fact that L is bad.

Definition 6.1. A bipartite graph with parts A and B has positive surplus
(with respect to A) if |N(X)| > |X| for all ∅ 6= X ⊆ A.

Lemma 6.2. Let G be a graph and f : V (G) → N. Assume G is not f -
choosable and let L be a minimal bad f -assignment. Assume L(v) 6= Pot(L)
for each v ∈ V (G). Then B(L) has positive surplus (with respect to Pot(L)).

Proof. Suppose not and choose ∅ 6= X ⊆ Pot(L) such that |N(X)| ≤ |X|
minimizing |X|. If |X| = 1, then GX can be colored from X contradicting
Lemma 6.1. Hence |X| ≥ 2. By minimality of |X|, for any Y ⊂ X, |N(Y )| ≥
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|Y |+1. Hence, for any x ∈ X, we have |N(X)| ≥ |N(X − {x})| ≥ |X − {x}|+
1 = |X|. Thus, by Hall’s theorem, we have a matching of X into N(X), but
|N(X)| ≤ |X| so this gives a coloring of GX from X contradicting Lemma
6.1.

Small Pot Lemma. Let G be a graph and f : V (G)→ N with f(v) < |G| for
all v ∈ V (G). If G is not f -choosable, then G has a minimal bad f -assignment
L such that |Pot(L)| < |G|.

Proof. Suppose not and let L be a minimal bad f -assignment. For each v ∈
V (G) we have |L(v)| = f(v) < |G| ≤ |Pot(L)| and hence L(v) 6= Pot(L). Thus
by Lemma 6.2 we have the contradiction |G| ≥ |N(Pot(L))| > |Pot(L)|.

6.2 Degree choosability

Definition 6.2. Let G be a graph and r ∈ Z. Then G is dr-choosable if G is
f -choosable where f(v) = d(v)− r.

Note that a vertex critical with χ = ∆ + 1 − r contains no induced dr-
choosable graph. For r = 0, we have the following well known generalization
of Brooks’ Theorem (see [6], [17], [36] and [24]).

6.2.1 Degree-choosable graphs

Definition 6.3. A Gallai tree is a graph all of whose blocks are complete
graphs or odd cycles.

Classification of d0-choosable graphs. For any connected graph G, the
following are equivalent.

• G is d0-choosable.

• G is not a Gallai tree.

• G contains an induced even cycle with at most one chord.

We give some lemmas about d0-assignments that will be useful in the
later study of general dk-assignments. Combined with the following structural
result, these lemmas give a quick proof of the classification of d0-choosable
graphs. See [17] and [16] for alternate proofs of the classification.

Lemma 6.3. Any 2-connected graph is complete, an odd cycle or contains an
induced even cycle with at most one chord.

Proof. Suppose not and choose a counterexample G minimizing |G|. Since G
is 2-connected and not complete, it contains an induced cycle C of length at
least four. Then C is an induced odd cycle and thus G−C is not empty. Since
G is 2-connected, we may choose a shortest C-path in G with distinct ends
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in C—call it R. Since G[V (C) ∪ V (R)] is 2-connected, by minimality of |G|,
V (G) = V (C) ∪ V (R).

First suppose R has length at least 3. Then since R is shortest, G = C ∪R
and thus one of the small cycles in C ∪R is an even induced cycle or the large
cycle is an even induced cycle with at most one chord, giving a contradiction.

Thus R has length 2. Let z be the vertex on R in G − C. If z has only
two neighbors in C, then we get a contradiction as in the previous paragraph.
Thus z has at least three neighbors a, b, c ∈ V (C). Now |C| ≥ 4 since G is
not complete. Thus, without loss of generality, the vertices between a and
b on C in cyclic order are w1, . . . , wk with k ≥ 1. But G − {w1, . . . , wk} is
2-connected, not complete, and not an odd cycle. Hence, by minimality of
|G|, G−{w1, . . . , wk} contains an induced even cycle with at most one chord.
This final contradiction completes the proof.

Lemma 6.4. A connected graph is d0-choosable iff it contains a d0-choosable
induced subgraph.

Proof. The forward direction is plain. For the reverse, let H E G be d0-
choosable. Since G is connected, we can order V (G) such that each vertex
in V (G−H) has a neighbor after it and V (H) comes last. Coloring V (G−H)
greedily from the lists in this order leaves a d0-assignment on H which we can
complete by assumption.

Lemma 6.5. Let L be a bad d0-assignment on a connected graph G and x ∈
V (G) a noncutvertex. Then L(x) ⊆ L(y) for each y ∈ N(x).

Proof. Suppose otherwise that we have c ∈ L(x) − L(y) for some y ∈ N(x).
Coloring x with c leaves at worst a d0-assignment L′ on the connected H :=
G − x where |L′(y)| > dH(y). But then we can complete the coloring, a
contradiction.

Lemma 6.6. Any even subdivision of a bridgeless d0-choosable graph is d0-
choosable.

Proof. Since subdividing an edge cannot create a bridge, it suffices to show
that subdividing an edge with two vertices preserves d0-choosability. Let G
be a bridgeless d0-choosable graph. Suppose there exists xy ∈ E(G) such
that subdividing xy with vertices w and z creates a graph H which is not
d0-choosable. Let L be a bad d0-assignment on H. Since G is bridgeless, w
and z are not cutvertices of H. By Lemma 6.5, L(w) = L(z). But L restricted
to G is a d0-assignment, so we have a coloring π of H − {w, z} from L such
that π(x) 6= π(y). Now L(w) − {π(x)} 6= L(z) − {π(y)} so we can complete
the coloring to all of H, a contradiction.

Using the Small Pot Lemma it is easy to prove that C4 and K−4 are d0-
choosable which combined with Lemma 6.6 shows that every even cycle with
at most one chord is d0-choosable. It turns out that the conclusion of the Small
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Pot Lemma holds for general bad d0-assignments, not just minimal ones. We
will use the following lemma often in proofs when we end up with a bad d0-
assignment that may not be minimal.

Lemma 6.7. If L a bad d0-assignment on a connected graph G, |Pot(L)| <
|G|.
Proof. Suppose that the lemma is false and choose a connected graph G to-
gether with a bad d0-assignment L where |Pot(L)| ≥ |G| minimizing |G|.
Plainly, |G| ≥ 2. Let x ∈ G be a noncutvertex (any end block has at least one).
By Lemma 6.5, L(x) ⊆ L(y) for each y ∈ N(x). Thus coloring x decreases
the pot by at most one, giving a smaller counterexample. This contradiction
completes the proof.

Proof of the classification of d0-choosable graphs. It is easy to construct a bad
d0-assignment on a Gallai tree—hence (1) implies (2). Now if a graph is not a
Gallai tree, then some block is neither complete nor an odd cycle. But then,
by Lemma 6.3, that block contains an induced even cycle with at most one
chord. Hence (2) implies (3).

Now we prove that C4 and K−4 are d0-choosable. If not, then we have a
bad d0-assignment L on C4 or K−4 . By Lemma 6.7, |Pot(L)| ≤ 3. Hence some
nonadjacent pair can be colored the same leaving a d−1-assignment on the
components which can be easily completed.

Thus, by Lemma 6.6, any even cycle with at most one chord is d0-choosable.
Combining this with Lemma 6.4 proves that (3) implies (1).

6.2.2 What can we say for general r?

In this section we prove some lemmas about dr-choosable graphs of the form
A ∗B. We leave them out of this prospectus for brevity.

6.2.3 The case r = 1

In this section we will classify the d1-choosable graphs of the form A ∗B with
|A| ≥ |B| ≥ 1. Currently the proof of this classification has around fifty
lemmas and we leave out all of the details and even the statement for brevity’s
sake. To give the flavor, we give the classification of d1-choosable graphs of
the form E2 ∗B and those of the form K3 ∗B.

Lemma 6.8. E2 ∗B is not d1-choosable iff B is the disjoint union of complete
subgraphs and at most one P3.

Definition 6.4. A graph G is almost complete if ω(G) ≥ |G| − 1.

Lemma 6.9. If K3 ∗B is not d1-choosable, then B is E3 ∗K|B|−3, almost
complete, Kt +K|B|−t, K1 +Kt +K|B|−t−1 or E3 +K|B|−3.

We note that the classification of the B’s for which K1 ∗B is d1-choosable
severely restricts the possible neighborhoods in a vertex critical graph with
χ = ∆.
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7 The Borodin-Kostochka conjecture for claw-free
graphs

In [15], Dhurandhar proved the Borodin-Kostochka Conjecture for a superset
of line graphs of simple graphs defined by excluding the claw, K5 − e and
another graph D as induced subgraphs. Kierstead and Schmerl [28] improved
this by removing the need to exclude D. The goal of this section is to remove
the need to exclude K5 − e.

We will apply a structure theorem for claw-free graphs of Chudnovsky and
Seymour [14]. To do so, we first need to handle the two base classes of the
structure theorem: line graphs and circular interval graphs. The first two
sections prove Borodin-Kostochka for these classes. Then we use the structure
theorem to prove the conjecture for quasi-line graphs. Finally, we prove that
no neighborhood in a claw-free counterexample can contain a 5-cycle and the
conjecture for claw-free graphs follows.

7.1 Line graphs of multigraphs

In this section we prove the Borodin-Kostochka Conjecture for line graphs of
multigraphs. Moreoever, we prove a strengthening of Brooks’ theorem for line
graphs of multigraphs and conjecture the best possible such bound.

Lemma 7.1. Fix k ≥ 0. Let H be a multigraph and put G = L(H). Suppose
χ(G) = ∆(G) + 1 − k. If xy ∈ E(H) is critical and µ(xy) ≥ 2k + 2, then xy
is contained in a χ(G)-clique in G.

Proof. Let xy ∈ E(H) be a critical edge with µ(xy) ≥ 2k + 2. Let A be
the set of all edges incident with both x and y. Let B be the set of edges
incident with either x or y but not both. Then, in G, A is a clique joined
to B and B is the complement of a bipartite graph. Put F = G[A ∪ B].
Since xy is critical, we have a χ(G) − 1 coloring of G − F . Viewed as a
partial χ(G) − 1 coloring of G this leaves a list assignment L on F with
|L(v)| = χ(G) − 1 − (dG(v) − dF (v)) = dF (v) − k + ∆(G) − dG(v) for each
v ∈ V (F ). Put j = k + dG(xy)−∆(G).

Let M be a maximum matching in the complement of B. First suppose
|M | ≤ j. Then, since B is perfect, ω(B) = χ(B) and we have

ω(F ) = ω(A) + ω(B) = |A|+ χ(B)

≥ |A|+ |B| − j = dG(xy) + 1− j
= ∆(G) + 1− k = χ(G).

Thus xy is contained in a χ(G)-clique in G.
Hence we may assume that |M | ≥ j + 1. Let {{x1, y1}, . . . , {xj+1, yj+1}}

be a matching in the complement of B. Then, for each 1 ≤ i ≤ j + 1 we have
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|L(xi)|+ |L(yi)| ≥ dF (xi) + dF (yi)− 2k

≥ |B| − 2 + 2|A| − 2k

= dG(xy) + |A| − 2k − 1

≥ dG(xy) + 1.

Here the second inequality follows since α(B) ≤ 2 and the last since |A| =
µ(xy) ≥ 2k+ 2. Since the lists together contain at most χ(G)− 1 = ∆(G)− k
colors we see that for each i,

|L(xi) ∩ L(yi)| ≥ |L(xi)|+ |L(yi)| − (∆(G)− k)

≥ dG(xy) + 1−∆(G) + k

= j + 1.

Thus we may color the vertices in the pairs {x1, y1}, . . . , {xj+1, yj+1} from
L using one color for each pair. Since |A| ≥ k + 1 we can extend this to a
coloring of B from L by coloring greedily. But each vertex in A has j+1 colors
used twice on its neighborhood, thus each vertex in A is left with a list of size
at least dA(v)−k+ ∆(G)−dG(v) + j+ 1 = dA(v) + 1. Hence we can complete
the (χ(G) − 1)-coloring to all of F by coloring greedily. This contradiction
completes the proof.

Theorem 7.2. If G is the line graph of a multigraph H and G is vertex critical,
then

χ(G) ≤ max

{
ω(G),∆(G) + 1− µ(H)− 1

2

}
.

Proof. Let G be the line graph of a multigraph H such that G is vertex critical.
Say χ(G) = ∆(G) + 1− k. Suppose χ(G) > ω(G). Since G is vertex critical,
every edge in H is critical. Hence, by Lemma 7.1, µ(H) ≤ 2k + 1. That is,
µ(H) ≤ 2(∆(G) + 1− χ(G)) + 1. The theorem follows.

This upper bound is tight. To see this, let Ht = t · C5 (i.e. C5 where each
edge has multiplicity t) and put Gt = L(Ht). As Catlin [12] showed, for odd t
we have χ(Gt) = 5t+1

2
, ∆(Gt) = 3t− 1, and ω(Gt) = 2t. Since µ(Ht) = t, the

upper bound is achieved.
We need the following lemma which is a consequence of the fan equation (see
[4, 9, 18, 20]).

Lemma 7.3. Let G be the line graph of a multigraph H. Suppose G is vertex
critical with χ(G) > ∆(H). Then, for any x ∈ V (H) there exist z1, z2 ∈ NH(x)
such that z1 6= z2 and

• χ(G) ≤ dH(z1) + µ(xz1),
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• 2χ(G) ≤ dH(z1) + µ(xz1) + dH(z2) + µ(xz2).

Lemma 7.4. Let G be the line graph of a multigraph H. If G is vertex critical
with χ(G) > ∆(H), then

χ(G) ≤ 3µ(H) + ∆(G) + 1

2
.

Proof. Let x ∈ V (H) with dH(x) = ∆(H). By Lemma 7.3 we have z ∈ NH(x)
such that χ(G) ≤ dH(z) + µ(xz). Hence

∆(G) + 1 ≥ dH(x) + dH(z)− µ(xz) ≥ dH(x) + χ(G)− 2µ(xz).

Which gives

χ(G) ≤ ∆(G) + 1−∆(H) + 2µ(H).

Adding Vizing’s inequality χ(G) ≤ ∆(H) + µ(H) gives the desired result.

Combining this with Theorem 7.2 we get the following upper bound.

Theorem 7.5. If G is the line graph of a multigraph, then

χ(G) ≤ max

{
ω(G),

7∆(G) + 10

8

}
.

Proof. Suppose not and choose a counterexampleG with the minimum number
of vertices. Say G = L(H). Plainly, G is vertex critical. Suppose χ(G) >
ω(G). By Theorem 7.2 we have

χ(G) ≤ ∆(G) + 1− µ(H)− 1

2
.

By Lemma 7.4 we have

χ(G) ≤ 3µ(H) + ∆(G) + 1

2
.

Adding three times the first inequality to the second gives

4χ(G) ≤ 7

2
(∆(G) + 1) +

3

2
.

The theorem follows.

Corollary 7.6. If G is the line graph of a multigraph with χ(G) ≥ ∆(G) ≥ 11,
then G contains a K∆(G).

With a little more care we can get the 11 down to 9. Using Lemma 5.10,
we can inductively reduce to the ∆ = 9 case.

Theorem 7.7. If G is the line graph of a multigraph with χ(G) ≥ ∆(G) ≥ 9,
then G contains a K∆(G).
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Proof. Suppose the theorem is false and choose a counterexample G minimiz-
ing ∆(G). Then G is vertex critical. By Lemma 5.10, ∆(G) = 9.

Let H be such that G = L(H). Then by Lemma 7.1 and Lemma 7.4 we
know that µ(H) = 3. Let x ∈ V (H) with dH(x) = ∆(H). Then we have
z1, z2 ∈ NH(x) as in Lemma 7.3. This gives

9 ≤ dH(z1) + µ(xz1), (1)

18 ≤ dH(z1) + µ(xz1) + dH(z2) + µ(xz2). (2)

In addition, we have for i = 1, 2,

9 ≥ dH(x) + dH(zi)− µ(xzi)− 1 = ∆(H) + dH(zi)− µ(xzi)− 1.

Thus,

∆(H) ≤ 2µ(xz1) + 1 ≤ 7, (3)

∆(H) ≤ µ(xz1) + µ(xz2) + 1. (4)

Now, let ab ∈ E(H) with µ(ab) = 3. Then, since G is vertex critical, we
have 8 = ∆(G)−1 ≤ dH(a)+dH(b)−µ(ab)−1 ≤ 2∆(H)−4. Thus ∆(H) ≥ 6.
Hence we have 6 ≤ ∆(H) ≤ 7. Thus, by (3), we must have µ(xz1) = 3.

First, suppose ∆(H) = 7. Then, by (4) we have µ(xz2) = 3. Let y be
the other neighbor of x. Then µ(xy) = 1 and thus dH(x) + dH(y) − 2 ≤ 9.
That gives dH(y) ≤ 4. Then we have vertices w1, w2 ∈ NH(y) guaranteed by
Lemma 7.3. Note that x 6∈ {w1, w2}. Now 4 ≥ dH(y) ≥ 1 + µ(yw1) + µ(yw2).
Thus µ(yw1) + µ(yw2) ≤ 3. This gives dH(w1) + dH(w2) ≥ 2∆(G) − 3 = 15
contradicting ∆(H) ≤ 7.

Thus we must have ∆(H) = 6. By (1) we have dH(z1) = 6. Then, applying
(2) gives µ(xz2) = 3 and dH(z2) = 6. Since x was an arbitrary vertex of
maximum degree and H is connected we conclude that G = L(3 ·Cn) for some
n ≥ 4. But no such graph is 9-chromatic by Brooks’ theorem.

The graphs Gt = L(t · C5) discussed above show that the following upper
bound would be tight. Creating a counterexample would require some new
construction technique that might lead to more counterexamples to Borodin-
Kostochka for ∆ = 8.

Conjecture 7.8. If G is the line graph of a multigraph, then

χ(G) ≤ max

{
ω(G),

5∆(G) + 8

6

}
.
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7.2 Circular interval graphs

A path in a topological space T is a continuous map p : [0, 1]→ T . A represen-
tation of a graph G in a topological space T is an injection f : V (G) ↪→ T
together with a set of paths {pxy}xy∈E(G) in T such that pxy(0) = f(x),

pxy(1) = f(y) and f−1(im(pxy)) is a clique in G. A graph is a circular in-
terval graph if it is representable in the unit circle. We note that this class
coincides with the class of proper circular arc graphs. A graph is a linear
interval graph if it is representable on the unit interval.

A b-fold coloring of a graph is an assignment of sets of size b to the vertices
of the graph such that adjacent vertices receive disjoint sets. An (a : b)-coloring
is a b-fold coloring out of a set of a available colors. The b-fold chromatic num-
ber χb(G) of a graph G is the least a such that G has an (a : b)-coloring. Then

we define the fractional chromatic number of G as χf (G) := limb→∞
χb(G)
b

.
Proving Borodin-Kostochka for circular interval graphs will be easier if we

have a large clique to work with. To get this we will use the fact that Reed’s
conjecture holds for circular interval graphs. This fact is immediate once we
have the following two lemmas.

Lemma 7.9 (Molloy and Reed [40]). Every graph satisfies χf ≤ ω+∆+1
2

.

Lemma 7.10 (Niessen and Kind [42]). Every circular interval graph satisfies
χ = dχfe.

Now we take a maximum clique in our circular interval graph and use our
list coloring lemmas from section 6 to show that no vertex close to the middle
(in cyclic order) of our clique can have more than one neighbor on either side
of the clique. But then all the vertices close to the middle are low or we have a
K∆. In the former case, we can use list coloring lemmas to get a contradiction.
The details are left out of this prospectus.

7.3 Quasi-line graphs

A graph is quasi-line if every vertex is bisimplicial (its neighborhood can be
covered by two cliques). We apply a version of Chudnovsky and Seymour’s
structure theorem for quasi-line graphs from King and Reed [31]. The unde-
fined terms will be defined after the statement.

Lemma 7.11. For any quasi-line graph G, at least one of the following is
true:

• G contains a nonlinear homogeneous pair of cliques,

• G is a circular interval graph,

• G is a line graph,

• G admits a canonical interval 2-join.
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A homogeneous pair of cliques (A1, A2) in a graph G is a pair of cliques
such that for each i ∈ [2], every vertex in G−(A1∪A2) is either joined to Ai or
misses all of Ai, some Ai contains at least two vertices and |G− (A1 ∪ A2)| ≥ 2.
A homogeneous pair of cliques is linear if G[A1∪A2] is a linear interval graph.

A graph G admits a canonical interval 2-join if G has an induced subgraph
H such that:

1. H is a linear interval graph,

2. The ends of H are disjoint nonempty cliques A1, A2,

3. G−H contains cliques B1, B2 (not necessarily disjoint) such that A1 is
joined to B1 and A2 is joined to B2,

4. there are no other edges between H and G−H.

Chudnovsky and Fradkin [13] proved a lemma allowing us to handle non-
linear homogeneous pairs of cliques.

Lemma 7.12 (Chudnovsky and Fradkin [13]). If G is a critical quasi-line
graph, then G contains no nonlinear homogeneous pair of cliques.

Thus, if we have a minimum counterexample to Borodin-Kostochka that
is quasi-line, the only possibility is that it admits a canonical interval 2-join.
By applying our list coloring lemmas similarly to how it is done for circular
interval graphs, we can show this is impossible.

7.4 Handling five-wheels

It will follow from some of our list coloring lemmas that if a neighborhood of
some vertex contains an induced C4 then that vertex is bisimplicial. Since the
neighborhoods are E3-free, as long as there is no C5 the neighborhood will be
chordal and again we can conclude that the vertex is bisimplicial. So if we
can exclude C5 from all neighborhoods, our graph will be quasi-line and the
conjecture will follow from the previous section.

8 Conjectures equivalent to the Borodin-Kostochka
conjecture that are a priori weaker

In this section we exclude more induced subgraphs in a minimal counterex-
ample than we can exclude using the list coloring lemmas in section 6 alone.
In fact, we lift these results out of the context of a minimal counterexam-
ple to graphs satisfying a certain criticality condition defined in terms of the
following ordering.
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Definition 8.1. If G and H are graphs, an epimorphism is a graph homo-
morphism f : G � H such that f(V (G)) = V (H). We indicate this with the
arrow �.

Definition 8.2. Let G be a graph. A graph A is called a child of G if A 6= G
and there exists H EG and an epimorphism f : H � A.

Note that the child-of relation is a strict partial order on the set of finite
simple graphs. We call this the child order and denote it by ‘≺’. By definition,
if H CG then H ≺ G.

Lemma 8.1. The ordering ≺ is well-founded; that is, every nonempty set of
finite simple graphs has a minimal element under ≺.

Proof. Let T be a nonempty set of finite simple graphs. Pick G ∈ T mini-
mizing |G| and then maximizing ‖G‖. Since any child of G must have fewer
vertices or more edges (or both), we see that G is minimal in T with respect
to ≺.

Definition 8.3. Let T be a collection of graphs. A minimal graph in T under
the child order is called a T -mule.

With the definition of mule we have captured the important properties
(for coloring) of a counterexample first minimizing the number of vertices and
then maximizing the number of edges. Viewing T as a set of counterexamples,
we can add edges to or contract independent sets in induced subgraphs of a
T -mule and get a non-counterexample. We could do the same with a minimal
counterexample, but with mules we have more minimal objects to work with.
One striking consequence of this is that many of our proofs naturally construct
multiple counterexamples to Borodin-Kostochka for small ∆.

For k ∈ N, by a k-mule we mean a Ck-mule. We will give the main results
in simplified form.

Lemma 8.2. Fix k ≥ 7 and let G be a k-mule (excepting two specimens). If
H is a K∆−1 in G, then any vertex in G−H has at most one neighbor in H.

Lemma 8.3. Fix k ≥ 8 and let G be a k-mule (excepting one specimen). Let
A and B be graphs with 3 ≤ |A| ≤ k−3 and |B| = k−|A| such that A ∗BEG.
Then A = K1 +K|A|−1 and B = K1 +K|B|−1.

This shows that the following weaker-looking conjecture is equivalent to
Borodin-Kostochka.

Conjecture 8.4. Any graph with χ ≥ ∆ ≥ 9 contains K3 ∗E∆−3 as a sub-
graph.

It also suggests that it might be worthwhile to look at the following weaker
conjecture.

Conjecture 8.5. Let G be a graph with ∆(G) = k ≥ 9. If Kt,k−t 6⊆ G for all
3 ≤ t ≤ k − 3, then G can be (k − 1)-colored.
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Notation

Symbology Meaning

|G| the number of vertices G has

‖G‖ the number of edges G has

G[S] the subgraph of G induced on S

EG(X, Y ) the edges in G with one

end in X and the other in Y

EG(X) EG(X, V (G)−X)

χ(G) the chromatic number of G

ω(G) the clique number of G

α(G) the independence number of G

∆(G) the maximum degree of G

δ(G) the minimum degree of G

κ(G) the vertex connectivity of G

G the complement of G

A+B the disjoint union of graphs A and B

A ∗B the join of graphs A and B (that is, A+B)

kG G+G+ · · · +G︸ ︷︷ ︸
k times

Gk G ∗G ∗ · · · ∗G︸ ︷︷ ︸
k times

H ⊆ G H is a subgraph of G

H ⊂ G H is a proper subgraph of G

H EG H is an induced subgraph of G

H CG H is a proper induced subgraph of G

H ≺ G H is a child of G

f : S ↪→ T an injective function from S to T

f : S � T a surjective function from S to T

X := Y X is defined as Y

Kk the complete graph on k vertices

Ek the edgeless graph on k vertices (that is, Kk)

Pk the path on k vertices

Ck the cycle on k vertices

Ka,b the complete bipartite graph with

parts of size a and b (that is, Ea ∗Eb)
[n] {1, 2, . . . , n}
N the natural numbers (0, 1, 2, . . .)

R the real numbers
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