
THE FRACTIONAL CHROMATIC NUMBER OF THE PLANE

DANIEL W. CRANSTON AND LANDON RABERN

Abstract. The chromatic number of the plane is the chromatic number of the uncountably
infinite graph that has as its vertices the points of the plane and has an edge between two
points if their distance is 1. This chromatic number is denoted χ(R2). The problem was
introduced in 1950, and shortly thereafter it was proved that 4 ≤ χ(R2) ≤ 7. These bounds
are both easy to prove, but after more than 60 years they are still the best known. In this
paper, we investigate χf (R2), the fractional chromatic number of the plane. The previous
best bounds (rounded to five decimal places) were 3.5556 ≤ χf (R2) ≤ 4.3599. Here we
improve the lower bound to 76/21 ≈ 3.6190.

1. Introduction

A proper coloring of the plane assigns to each of its points a color, such that points at
distance 1 get distinct colors. The smallest number of colors that allows such a coloring is
the chromatic number of the plane, denoted χ(R2). This problem was introduced in 1950, by
Edward Nelson, a student at the University of Chicago. In the same year John Isbell, a fellow
student, observed that χ(R2) ≤ 7. This upper bound comes from a result of Hadwiger [11],
who showed that it was possible to partition the plane into hexagons, each of diameter
slightly less than 1, and color each hexagon with one of seven colors, such that hexagons
with the same color are distance more than 1 apart (see Figure 2).

The lower bound χ(R2) ≥ 4 comes from the observation of William and Leo Moser [16]
that the graph in Figure 1(A) is a unit distance graph, i.e., it can be drawn in the plane with
all edges of length 1. This graph is now known as the Moser spindle; since it has chromatic
number 4, the lower bound follows. Around the same time [20, p. 19], Solomon Golomb

(a) The Moser spindle (b) The Golomb graph

Figure 1. Two 4-chromatic unit distance graphs.
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Figure 2. A 7-coloring of the plane.

discovered the unit distance graph in Figure 1(B), which also has chromatic number 4. The
problem first appeared in print in 1960 in Martin Gardner’s Mathematical Games column [9].

A seemingly helpful result of de Bruijn and Erdős [2] implies that the chromatic number of
the plane is achieved by some finite subgraph (this proof does assume the Axiom of Choice).
But unfortunately we have no reason to expect that such a subgraph will have fewer than
(say) a billion vertices. By constructing a 6-coloring of nearly all of the plane, Pritikin [18]
showed that if a 7-chromatic unit distance graph does exist, then it has at least 6198 vertices.
As for the lower bound, Erdős wrote in 1985 [4, p. 4] “I am almost sure that χ(R2) > 4.”

The history of the problem has many more interesting twists than we can recount here, but
Soifer records nearly all of them in his comprehensive and entertaining The Mathematical
Coloring Book [20]. Although this problem has been widely popularized in the last half
century, the best known bounds remain 4 ≤ χ(R2) ≤ 7.

The notion of fractional chromatic number was introduced in the early 1970s, with the goal
of amassing more evidence in support of the Four Color Conjecture, or possibly disproving it.
In a fractional coloring of a graph G, we assign to each independent set in G a nonnegative
weight, such that each vertex appears in independent sets with weights summing to at
least 1. The fractional chromatic number, χf (G), is the minimum sum of weights on the
independent sets that allows such a coloring (for infinite graphs, take the infimum of this
sum). This definition comes from solving the linear relaxation of the integer programming
formulation of chromatic number. When G is infinite, χf (G) may also be infinite, although
certainly χf (G) ≤ χ(G). Interestingly, no analogue of the above-mentioned de Bruijn–Erdős
result holds for fractional coloring [19, p. 74].
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In 1992, Fisher and Ullman [8] first investigated the fractional chromatic number of the
plane, denoted χf (R2). (Formally, we define a graph that has as its vertices the points of
R2, where two vertices are adjacent if they are distance 1 in the plane. Now we consider
the fractional chromatic number of this graph.) They observed that the fractional chromatic
number of the Moser spindle is 3.5, which gives a lower bound on χf (R2). They also gave a
coloring that proved the upper bound χf (R2) ≤ 8

√
3/π ≈ 4.4106. Using a similar approach,

Hochberg and O’Donnell [12] improved the upper bound to 4.3599. The construction they
used was actually discovered much earlier by Croft [1]. The lower bound was first improved
by Shawna Mahan [14], who found a unit distance graph with fractional chromatic number
144/41 ≈ 3.5122. This bound was significantly improved by Fisher and Ullman [19, p. 63–
66], who found a unit distance graph with fractional chromatic number 32

9
≈ 3.5556. The

bounds 3.5556 ≤ χf (R2) ≤ 4.3599 were the best known, until now. In this paper, we improve
the lower bound to 76/21 ≈ 3.6190.

2. A First Lower Bound

In this section we provide a unit distance graph with fractional chromatic number greater
than 3.6. Our construction builds heavily on an example of Fisher and Ullman, so we present
that as well. To begin, we consider the fractional chromatic number of the two unit distance
graphs we have already seen, the Moser spindle and the Golomb graph. The Moser spindle
has 7 vertices and independence number 2, which show that χf ≥ 7

2
= 3.5. To prove that

this lower bound holds with equality, it suffices to find 7 independent sets such that each
vertex appears in two of them. This task is straightforward, once we put the bottom vertex
into independent sets with each of its nonneighbors. The Golomb graph has 10 vertices and
independence number 3, which show that χf ≥ 10

3
= 3.3. In fact, this bound also holds with

equality. The matching upper bound comes from finding 10 independent sets, such that each
vertex appears in 3 of them. We leave this as an easy exercise.

The Moser spindle shows that χf (R2) ≥ 3.5. The intuition behind the Fisher–Ullman
construction is the following. Consider a unit distance graph that contains many copies of
the Moser spindle, along with as many edges as possible between these copies of the spindle.
These edges between the copies of the spindle, as well as vertices that appear in more than
one copy, ensure that some copy of the spindle must be colored suboptimally. This will prove
some lower bound greater than 3.5. The details forthwith.

Recall that for any assignment of weights to the vertices, the fractional chromatic number
is bounded below by the total weight on the vertices divided by the maximum total weight
of any independent set. (We used this argument above to bound χf for the Moser spindle
and Golomb graph; there we implicitly gave each vertex weight 1.) Thus, for any weight
assignment, to bound χf from below, we need only bound from above the maximum weight
of any independent set.

We construct the Fisher–Ullman graph in two stages. We begin with the subset of the
triangular lattice shown in Figure 3(A), called the core; for now ignore the weights, which
we will get to shortly. A diamond is the subgraph induced by two vertices at distance

√
3

and their two common neighbors. For each of the 5 vertical diamonds, we attach a copy of
the Moser spindle; in each case, we identify the four vertices of the diamond with the four
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(a) The core vertices and
weights from the Fisher–Ullman
construction; spindle weight 1
gives χf ≥ 32

9 ≈ 3.5555.

3 3

4 7 4

4 8 8 4

3 7 8 7 3

3 4 4 3

(b) Vertices and weights for a
bigger core; spindle weight 1
gives χf ≥ 168

47 ≈ 3.5744.

Figure 3. The two smallest cores that we consider.

vertices of the vertical diamond in the spindle, and we add three new vertices. These new
vertices are spindle vertices. The two core vertices that are each adjacent to at least one
of these spindle vertices are incident to the spindle. Nothing is special about the vertical
direction in the core, so we also attach spindles to the five diamonds pointing down and to
the left, as well as the five pointing down and to the right; before attaching these spindles, we
rotate them 120 degrees clockwise and 120 degrees counterclockwise, respectively. Finally,
we add all edges between pairs of vertices at distance 1.

The graph that results has 3-fold rotational symmetry. Each spindle adds 3 new vertices,
so the 15 spindles add a total of 45 vertices. With the 12 core vertices, this makes a total of

(a) An internal core vertex of
Gd (e.g. the “20” in Figure 5(A))
and its 6 incident spindles.

(b) An internal core vertex of
G′

d (defined in Section 3.2) and
its 12 incident spindles.

Figure 4. Spindles for Gd and G′d.
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(a) The core vertices and
weights for a bigger core; spin-
dle weight 2 gives χf ≥ 491

137 ≈
3.5839.
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11 21 11
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9 19 21 19 9
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11 26 21 18 18 21 26 11

6 21 26 19 18 19 26 21 6

6 11 9 9 9 9 11 6

(b) The core vertices and
weights for a bigger core; spin-
dle weight 3 gives χf ≥ 1732

481 ≈
3.6008. This LP had over
25, 000 constraints.

Figure 5. Two larger cores.

57 vertices. The graph has 24 edges among core vertices and 6(15) more edges within
spindles; for each of three directions, it has 21 edges between vertices in different spindles
that are oriented in the same direction. Finally, it has another 21 edges among pairs that
seem to “accidentally” be at distance 1. (Understanding these last 21 edges is inessential,
since they are not used in proving the lower bound.)

Now we assign weights to the vertices. The weights on the core vertices are shown in
Figure 3(A). To each spindle vertex, we assign weight 1. We have 45 spindle vertices, and
the weights on the core sum to 51, so the total weight is 96. Thus, to prove a lower bound
of 32

9
, it suffices to show that every independent set has weight at most 27. This requires a

short case analysis, and Scheinerman and Ullman [19, p. 64–65] gives most of the details.
Following this proof is fairly easy, but where do the weights come from? They come

from solving a linear program (hereafter LP). Specifically, each weight is a variable, each
independent set has weight at most 1, and the sum of the weights is to be maximized. (To
simplify our presentation above, we multiplied all weights by 27, but that does not affect the
lower bound.) So what about larger cores?

We can easily generalize the Fisher–Ullman construction to start from a larger core (as
suggested in [19, p. 75]), and we will do exactly this. But first, it is helpful to comment on the
obvious symmetry of the weights in Figure 3(A). Suppose we are given an optimal assignment
of weights, i.e., an optimal solution to the LP in the previous paragraph. Each automorphism
of the graph yields another optimal assignment of weights. Further, the average of all these
weight assignments is again optimal. Thus, we may assume that the same weight is given to
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all vertices in each orbit when the vertices are acted on by the automorphism group. This
observation [13, p. 7] dramatically reduces the size of our LP, thus making it tractable.

Figures 3(B) and 5(A) show the results from solving the corresponding LPs for the next
few sizes of cores. In each case, the lower bound on χf improves, but more slowly. We set for
ourselves the goal of proving a lower bound of 3.6, and using the weights in Figure 5(B) we
achieved it, just barely. In fact, these weights prove χf ≥ 3.6008. We would have liked to con-
sider still larger cores, but the size of the derived LP was growing exponentially (along with
the number of maximal independent sets), and the LP for the core in Figure 5(B) involved
already more than 25,000 constraints. For this lower bound of 3.6008, we offer no proof.
However, the interested reader can download our code for generating the LP from: https:
//github.com/landon/WebGraphs/blob/master/Analysis/SpindleAnalyzer.cs. To do
much better, and certainly to give a human-checkable proof, we needed a new approach.

3. An Improved Lower Bound

3.1. A Lower Bound by Discharging. In the previous section, we proved that χf (R2) >
3.6. To do so, we chose a unit distance graph and gave its vertices weights summing to more
than 3.6, such that the weights on every independent set summed to at most 1. However,
this proof has three drawbacks. First, it is not practically human-checkable, since that graph
has more than 25,000 maximal independent sets. So to verify that each independent set has
weight at most 1, we have a lot of cases to check. Second, we have no reason to believe
that this bound of 3.6008 is actually near the fractional chromatic number of the plane. It
is simply the best bound we could prove before the number of maximal independent sets
became unmanageable. Finally, and perphaps most disturbingly, the proof offers no real
insight. We have simply found some weights “that work”.

In this section, we prove a stronger lower bound. In the process, we address all of these
concerns, as well. We take a similar approach to our previous proof, but with a few key
differences. As before, we start with a subset of the triangular lattice, called the core. Now
everywhere that we possibly can, we add on spindles, much like in the previous proof. The
first main difference is that we don’t worry much about optimizing the weights. We give the
same weight to every vertex in the core, and the same weight to every spindle vertex. (We
will optimize the ratio of these two weights, but that problem is much easier.)

The second main difference—really the key that allows the proof to work—is that when
bounding the weight of an independent set, we don’t consider the set all at once. Rather, for
an arbitrary maximal independent set I, we partition the graph into subgraphs, and bound
the fraction of the weight on each subgraph that is in I. Now the fraction of weight on the
whole graph that is in I is no more than the maximum fraction on any of these subgraphs. By
partitioning into subgraphs of bounded size, we avoid the combinatorial explosion we faced
in the previous section, when each maximal independent set generated its own constraint in
the LP. An important decision is how to choose these subgraphs, so that we have relatively
few cases, but we also get a good bound on the fraction of the total weight in I. We return
to this question later.

https://github.com/landon/WebGraphs/blob/master/Analysis/SpindleAnalyzer.cs
https://github.com/landon/WebGraphs/blob/master/Analysis/SpindleAnalyzer.cs
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To illustrate our approach, we start with a short proof that χf (R2) ≥ 3.5. Obviously this
bound is weak (recall that the Moser spindle has fractional chromatic number 3.5), but its
proof elucidates many of the key features of our method.

We define a graph Gd and its weights as follows. To begin, specify an arbitrary vertex v in
the triangular lattice. For our core, take all of the triangular lattice induced by vertices that
are distance at most d from v. For our spindles, add every possible spindle in each of the
three directions we used in the previous section. This is our graph Gd. Let Cd denote the
subgraph of Gd induced by its core vertices. For our weight function, we assign weight 12 to
every core vertex and weight 1 to every spindle vertex. Now, given an arbitrary independent
set I, we will discharge all of its weight to core vertices, so that each core vertex has weight
at most 6. We use the following two discharging rules.
(R1) Each core vertex in I gives weight 1 to each of its neighbors in the core.
(R2) Each spindle vertex in I splits it weight equally between the core vertices incident to

its spindle that are not in I.
Note that if a spindle vertex is in I, then at least one of the core vertices incident to the

spindle is not in I; hence (R2) does, indeed, move all charge from spindle vertices to core
vertices. Now clearly all the weight in I ends on vertices in the core. We must verify that
each core vertex finishes with charge at most 6. In additition to core vertices in I, we have
four possibilites for a core vertex not in I; it can have 3, 2, 1, or 0 core neighbors in I. We
now check these five cases.

Note that each core vertex has at most 6 incident spindles (exactly 6 if the core vertex
is not too close to the “outside” of the core). So a naïve upper bound on the final charge
at each core vertex v is 9, since v receives 1 from each of at most 3 core neighbors, and it
receives at most 1 from each of 6 spindles. However, this bound can be improved. Suppose
that v is a core vertex not in I, and let u be some core neighbor of v that is in I. Now u
has two neighbors, say w1 and w2, that are each distance

√
3 from v. Note that v shares

one spindle each with w1 and w2. The key observation is that u ∈ I implies w1 /∈ I and
w2 /∈ I. Thus, v receives weight at most 1/2 from each of the spindles it shares with w1 and
w2. Repeatedly applying this insight leads to the following upper bounds on the final charge
at each core vertex.

Core vertex in I: 12− 6(1) + 0 = 6.
Core vertex with three neighbors in I: 0 + 3(1) + 6(1/2) = 6.
Core vertex with two neighbors in I: 0 + 2(1) + 4(1/2) + 2(1) = 6.
Core vertex with one nbr in I: 0 + 1(1) + 2(1/2) + 4(1) = 6.
Core vertex with zero neighbors in I: 0 + 0(1) + 0(1/2) + 6(1) = 6.
So we have shown that each core vertex finishes with weight at most 6. To compute a lower

bound on χf , we divide the total weight on Gd by (an upper bound on) the total weight of
any independent set. To simplify the computations, we neglect the effect of vertices near the
outside of the core, which have fewer than six incident spindles (this choice can be justified,
since the number of “interior” core vertices is asymptotically greater than the number of
“boundary” core vertices). Let M denote the number of core vertices. Each core vertex is
incident to six spindles and each spindle is incident to two core vertices; hence, the number
of spindles is M(3− o(1)). Since each spindle has 3 spindle vertices, the number of spindle
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vertices is M(9 − o(1)). Thus, the total weight on the graph is M(12 + 9(1) − o(1)). The
final total weight on the core is at most 6M . This proves a lower bound of 21

6
= 3.5.

It is reasonable to ask why we give the same weight to every core vertex, since this differs
from our choice in the previous section. A simple answer is that “it works”, but this is
unenlightening. A somewhat better answer is that “by weighting each vertex identically, we
dramatically reduce the number of cases we must consider.” This is true, but still misses the
real point. To understand more fully, we return to the weights used in Section 2. There we
weighted two vertices identically whenever the graph had an automorphism mapping one to
the other. In that context, our automorphisms consisted of reflections and rotations, and
compositions of the two.

In the present context, since we consider Gd as d grows without bound, we are essentially
considering the fractional chromatic number of an infinite graph. (Our choice to consider the
graph in ever larger pieces, rather than all at once, is mainly a concession with the goal of
simplifying the averaging argument.) If we are indeed considering an infinite graph, then we
have an additional type of automorphism: translations. Now it is clear that we can map any
core vertex to any other core vertex; so the choice to weight them equally is quite natural.

Once we understand the proof of this lower bound, it’s reasonable to ask how we can
strengthen it. One obvious choice is to change the weight we give to each core vertex. To
make this approach work, we need to consider the core vertices in larger groups, rather than
in isolation, as in the previous proof. Our idea is to partition the subgraph induced by
the core vertices into smaller subgraphs, which we call tiles. As our tiles grow bigger, we
gain more information about the neighborhoods of their vertices, which facilitates a better
bound on their average final weight. However, as the tiles grow bigger, they also grow more
numerous, and require more case analysis. As a compromise, we choose the tiles to be
(essentially) as small as possible, subject to each corner of each tile being a vertex of I, the
independent set.

A priori, the distance could be large between a core vertex in I and its nearest core vertex
in I. However, we are interested only in choices of I that potentially have maximum weight.
By requiring that each core vertex gets weight greater than its number of incident spindles,
we can make the following simplification. We only need to consider choices of I that are
maximal independent subsets of the core. Suppose instead that for some core vertex v some
independent set I contains neither v nor any of its core neighbors. We form I ′ from I by
adding v and removing all spindle neighbors of v in I. Since the weight on v is greater than
its number of incident spindles, I ′ weighs more than I.

In the following lemma, we formalize this idea of choosing the tiles to be “as small as
possible, subject to each corner of each tile being a vertex of I, the independent set.” We
also show that this process results in only 8 distinct tiles, up to rotation and reflection.

3.2. Tiling Result.

Lemma 1. Let I denote a maximal independent subset in Cd. There exists a set T of 8
finite tiles (shown in Figure 6), independent of d and I, such that Cd can be tiled with tiles
from T where each corner of each tile is a vertex of I and no vertex of I lies in the interior
of any tile. In this tiling, each face of Cd is covered by exactly one or two tiles. (We do allow
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u

(a) T1 (b) T2

u v

(c) T3

u v

(d) T4

u

v w

(e) T5

u

v w

x

(f) T6

u

v w

x y

z

(g) T7

u

v w x

y z

(h) T8

Figure 6. The 8 possible tiles (up to reflection and rotation).

tiles to extend past the boundary of Gd, though this allowance could be removed by adding
more tiles to T .)

Proof. For an example of such a tiling, see Figure 7.
Before we begin the formal proof, we note that every maximal subset I of Cd must contain

at least 1
7
of its vertices. Since I is maximal, for every vertex v, the set I contains either v or

some neighbor of v. So to prove the lower bound 1
7
, we observe that there exists a set A of 1

7

of all the vertices such that for every pair u,w ∈ S, we have distCd
(u,w) ≥ 3. Thus, for each

vertex u in A, the set I contains some element of N [u]; further, these sets are disjoint, i.e.,
for any pair u,w ∈ A, we have N [u]∩N [w] = ∅. To see that such a set A exists, we view the
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Figure 7. An example tiling of a portion of the triangular lattice.

infinite triangular lattice as the planar dual of the 7-face-coloring shown in Figure 2. This
gives a 7-coloring of the triangular lattice, and hence a 7-coloring of Cd; we choose as A the
vertices of a largest color class.

This reasoning actually proves that I must contain at least roughly 1
7
of the vertices in

any region of Cd. Intuitively, for each face f of Cd, some nearby vertices are in I, so it will
be possible to cover f using a small tile, with all of its vertices nearby. Now we make this
intuition rigorous.

First we describe the process for partitioning Cd into tiles; shortly, we will analyze it to
show that we form only 8 tiles (up to rotation and reflection). To partition Cd into pieces,
for each vertex pair u,w ∈ I, we add edge uw if and only if u and w have euclidean distance
less than 3. Whenever two edges cross, we delete them both. This process clearly constructs
a plane graph. In what follows, we show that the faces of this graph, which will become our
tiles, have at most 8 distinct shapes and sizes. Let T be some arbitrary face of the plane
graph constructed above. We first consider the case where T contains some edge of Cd in its
interior (not boundary) that is incident to one of its corners; we will later show that if this
is not the case, then T must be T2. By symmetry, we may assume that this corner is w, as
shown in Figure 8. By rotational symmetry around w, we may assume that T contains edge
ww0 in its interior.

As noted above, I contains w3 or one of its neighbors; similarly, I contains w7 or one of
its neighbors. Since ww0 is in the interior of T , we may assume that w5 /∈ I. Since w ∈ I,
none of its neighbors are in I. Thus, I contains some vertex in each of vertex sets A and
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w11 w12

w10 w6 w8

w4 w5 w7 w9

w2 w3 w0

w1 w

Figure 8. Names of key vertices for verifying that the tiles have only 8 shapes.

B, where A = {w1, w2, w3, w4} and B = {w6, w7, w8, w9}. Naïvely, this gives 16 cases to
consider. The number is actually smaller due to the symmetry across the line segment ww5,
but we rarely make use of this symmetry, to keep the case organization clear. We consider
these cases now.

Suppose that w3 ∈ I. If w7 ∈ I, then we have T1 (throughout the proof, we refer to each
tile by its caption in Figure 6). If w8 ∈ I, then we have T4. If exactly one of w6 and w9 is
in I, then we have T3. If both of w6 and w9 are in I, then we have T6; note that this is the
unique instance where initially two edges of our constructed graph crossed, so we deleted
them.

Suppose that w4 ∈ I. If w6 ∈ I, then we have T4. If w7 ∈ I, then we have T3. If w8 ∈ I,
then we have T5. So, suppose that w9 ∈ I and w6 /∈ I. Recall that I must contain w6 or
one of its neighbors. So either w11 ∈ I or w12 ∈ I. In the former case, we have T7; in the
latter, we have T8.

Suppose that w2 ∈ I. If w6 ∈ I, then we have T5. If w7 ∈ I, then we have T4. If w8 ∈ I,
then we must have w10 ∈ I, since I contains neither w5 nor any of its other neighbors. Now
we have T8. So suppose that w9 ∈ I and w6 /∈ I. Again, we must have w10 ∈ I, since I
contains neither w5 nor any of its other neighbors. Now we have T7.

Suppose that w1 ∈ I (and w4 /∈ I). By symmetry across ww5, we may assume that w9 ∈ I
and w6 /∈ I. Again, this implies w10 ∈ I. Once again, we have T8.

Now we consider the case that T contains no edge of Cd in its interior. Let w be a corner
of T . We observe, as follows, that each boundary segment of T must have length at most 2.
Suppose, to the contrary, that T has a boundary segment that is longer. By symmetry, we
may assume that it is ww2. By symmetry, we may also assume that T lies above this segment
(the case where T lies below it is essentially the same). We will show that T contains the edge
w2w3 in its interior. Since I is maximal, it contains w5 or one of its neighbors; specifically,
I contains w5, w6, w7, or w10. In the first three cases, T is a triangle and clearly contains
w2w3 in its interior. So assume that w10 ∈ I and w7 /∈ I. Now either w8 ∈ I or w9 ∈ I. So
T is either T8 or T7, respectively; in each case T contains edge w2w3 in its interior. Hence,
we conclude that each boundary segment of T has length at most 2.
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Suppose now that T has a boundary segment of length
√
3. By symmetry, say this is

segment ww3 and that T lies above this segment. Since I is maximal, it contains either w7

or (at least) one of its neighbors. In each case, T contains edge ww0 in its interior. Thus, we
conclude that T has no boundary segments of length

√
3. Hence, every boundary segment of

T must have length 2. Further, the interior angle formed by boundary segments at a corner
must be π/3. So we conclude that T must be T2. �

The previous result shows that we can tile Cd with only 8 tiles. However, each of these
tiles may be rotated or reflected in numerous ways. In order to discharge the weight from
spindle vertices to core vertices, we will view each of these tiles together with the spindles
incident to its vertices. If we keep with our earlier strategy of attaching spindles at each
vertex v in only 3 directions with v as their bottom vertex (for a total of 6 incident spindles,
including those with v as their top vertex), we will break some of the symmetries we required
in our proof that 8 tiles suffices. In particular, the roles of vertices incident to a spindle at
its top and bottom are inherently asymmetrical, since the bottom is adjacent to two spindle
vertices, while the top is adjacent to only one.

One obvious approach for handling this difficulty is to consider multiple cases for each tile,
depending on its orientation; but this solution is inelegant. So we prefer instead the following
approach; its key feature is that symmetry is preserved under both rotations and reflections,
as well as compositions of the two. We now attach spindles at each vertex in 6 directions (for
a total of 12 incident spindles) as follows; see Figure 4(B). Each pair of vertices, say u and v,
that shared a spindle before now share two spindles; for one spindle u is the top vertex and
v is the bottom, and for the other spindle the roles are reversed. For a pair of vertices u and
v that share a spindle, the positions of the spindle vertices in the second spindle come from
reflecting the vertices in the first spindle across the perpendicular bisector of line segment uv.
Thus, if the spindle with u as its base is rotated θ radians clockwise (around u) past uv (for
an appropriate θ), then the spindle with v as its base is rotated θ radians counterclockwise
(around v) past uv. Hence, each vertex v will be the bottom vertex for 6 spindles. Three of
these six spindles will each be oriented 2π/3 radians clockwise of the previous one; the other
three will be oriented similarly (relative to each other). We call this graph G′d.

In Section 3.1, we used discharging to prove a lower bound of 3.5. To rephrase that proof
in this setting with twice as many spindles, we simply give each core vertex weight 12 and
each spindle vertex weight 1

2
(rather than 1, as before). A moment’s reflection will show that

the rest of that proof goes through essentially unchanged.
An attentive reader will perhaps wonder whether all of these supposedly distinct spindle

vertices do indeed fall in different locations. The answer is yes, although it turns out not to
matter. First, we should mention that the angle of rotation for each spindle, called θ above,
is cos−1(5

6
). In less than a page of computations, we can show that the spindle vertices really

do have distinct locations. But we don’t need to.
Recall that our proof that χf (R2) ≥ 76

21
consists of two parts. In one part, we prove lower

bounds on the fractional chromatic number for a sequences of graphs, and show that these
lower bounds converge to 76

21
. In the other part, we show that each graph in the sequence is

a unit distance graph. We have constructed our graph sequence G′d, and in what follows, we
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will prove the desired lower bounds. So we need only show that each G′d is a unit distance
graph, by describing some embedding.

We take as our embedding of the core vertices the obvious one, from the triangular lattice.
If it happens that two (or more) spindle vertices coincide, then we assign to this “combined”
vertex at their common location the sum of the weights we had intended to assign to them
individually. Each of the supposedly distinct spindle vertices now has more neighbors than
we originally claimed, but none has fewer. If this combined spindle vertex v does appear
in the independent set I, then, for each spindle S containing v, we discharge to the core
vertices incident to S the portion of v’s weight that was due to it appearing in S. Thus, the
lower bound remains valid.

3.3. Discharging Result. In this section, we continue with the graphs G′d of the previous
section. We show that as d grows, the fractional chromatic number of G′d is bounded below
by a sequence converging to 76

21
≈ 3.619047. In what follows, when we write o(1), we mean

as d goes to infinity.

Theorem 2. The fractional chromatic number of the plane is at least 76
21
, i.e., χf (R2) ≥ 76

21
.

Proof. At each core vertex we attach spindles in 6 directions, as described above. Each
core vertex gets weight 31

5
, and each spindle vertex gets weight 1

2
. Let I be an arbitrary

maximal independent set. We will redistribute the weight in I so that the core vertices end
with average weight at most 21

5
and each spindle vertex ends with weight at most 0. To

help bound the average final weight of the core vertices, we compute the average weight
of the core vertices in each tile, and show that the average weight for each tile is at most
21
5
. As before, we let M denote the number of core vertices. The total weight on the

core is 31
5
M , and each spindle vertex has weight 1

2
. Since the number of spindle vertices is

M(18 − o(1)), the total weight on G′d is M(31
5
+ 1

2
(18) − o(1)). Since the core vertices end

with average weight at most 21
5
, the total weight in I is at most 21

5
M . This proves that

χf (R2) ≥ (31
5
+ 1

2
(18)− o(1))/(21

5
) = 76

21
≈ 3.619047.

Now we give the details of how to redistribute the weight. Each vertex of Cd has a target
weight of (at most) 21

5
. The target weight for a tile T is 21

5
(iT +

1
2
bT +0cT ), where iT , bT , and

cT denote the number of core vertices (respectively) in the interior of T , on the boundary
(but not corners) of T , and on the corners of T . Each corner of T is a vertex of I, and its
final weight will be computed by itself. Each interior vertex of T has all of its target weight
assigned to T ; similarly, each boundary (but not corner) vertex of T has exactly one half of
its target weight assigned to T . If T has more weight than its target, then this difference is
its excess ; otherwise, the difference is its deficit. Our goal is to show that each tile finishes
with excess at most 0.

Each diamond has a spindle attached in two directions; we call these the up spindle and
the down spindle. If a diamond has two vertices in I, then its spindles are trivial. A non-
trivial spindle that has no spindle vertex in I is missing. We redistribute the charge using
three discharging phases.

Phase 1.
(R1) Each core vertex in I gives weight 1

3
to each core neighbor.
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(a) A 5-spindle block. (b) A 6-spindle block.

Figure 9. Spindle blocks used in Phase 3.

(R2) Each non-trivial spindle splits weight 1
2
equally among the core vertices not in I that

are incident to the spindle. If one of the two incident core vertices is in I, then the
spindle sends weight 1

2
to the other; otherwise it sends weight 1

4
to each.

(R3) Each core vertex v not in I gives its weight to the tile containing it. If v is on the
border of two tiles, then v splits its weight between them (but not quite equally).
This is a little subtle, but crucial. For such a v, it has two neighbors in I; v does
split the weight from its neighbors in I equally among its two tiles. Now v also has
12 incident spindles; so v sends any weight it got from 6 of the spindles to one tile
and the weight from the other spindles to the other tile. Split the 12 spindles into
two sets of 6 each, spaced 120 degrees apart (the up spindle and down spindle for
each pair of vertices go into the same set). Now v gives each tile the weight it got
from the set of spindles that includes the spindle pointing away from the border into
that tile.

Phase 2.
(R4) Each copy of T3 takes 3

10
from the tile on its long side.

(R5) Each copy of T1 splits its deficit equally among all adjacent copies of T6. In other
words, it takes an equal amount of weight from each adjacent copy of T6, so that it
ends with excess 0.

Phase 3.
(R6) Each copy of T2 gives 1

4
to each missing spindle in its 5-spindle block (Figure 9(A))

in each of three directions. Each copy of T6 gives 1
8
to each missing spindle in its

6-spindle block (Figure 9(B)) in each of four directions.

We now check that each vertex in I and each tile ends with average weight at most 21
5
.

For vertices in I, this is immediate since each ends with weight 31
5
− 6(1

3
) = 21

5
. We also

check that each spindle finishes with weight at most 0.
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Claim 1. After Phase 1 the tiles have excess at most:
T1: -1/5 T2: 7/10 T3: -3/10 T4: 3/5 T5: 2/5 T6: 2/5 T7: 0 T8: 0.

Proof. The main observation needed for this proof is essentially the same one we needed
for the discharging proof in Section 3.1. If v is a core vertex not in I, then for each core
neighbor u of v in I there exist four spindles incident to v that send v weight at most 1

4
each.

Specifically, u has two neighbors, say w1 and w2, that are each distance
√
3 from v. Further,

v shares two spindles with each wi. Since u ∈ I, we know that w1, w2 /∈ I. Thus, each
spindle shared between v and each wi splits its weight equally between v and wi. Hence, v
receives weight at most 1

4
from each such spindle.

T1: 3(1
3
) + 12(1

4
) = 4. The target weight is 21

5
, so the excess is 4− 21

5
= −1

5
.

T2: Since T2 has 3-fold rotational symmetry, we compute the weight received from one
boundary vertex, then multiply by 3. This is 3(1

3
+ 4(1

4
) + 2(1

2
)) = 7. The target weight is

3
2
(21
5
) = 63

10
, so the excess is 7

10
.

T3: We may assume that the tile T̂ bordering this copy T of T3 along its longest side is
not another copy of T3 with each of its edges parallel to an edge of T . If it were, then these
two copies of T3 would be merged into a single copy of T6. This assumption enables us to
improve the bound on the total weight on T , which is (1

3
+6(1

4
))+ (2(1

3
)+10(1

4
)+2(1

2
)) = 6.

The target weight is 3
2
(21
5
) = 63

10
, so the excess is − 3

10
.

T4: (2(1
3
) + 12(1

4
)) + (1

3
+ 4(1

4
) + 8(1

2
)) = 9. The target weight is 2(21

5
) = 42

5
, so the excess

is 3
5
.

T5: Since T5 has 3-fold rotational symmetry, we compute the weight received from one
interior vertex, then multiply by 3. This is 3(1

3
+ 8(1

4
) + 4(1

2
)) = 13. The target weight is

3(21
5
) = 63

5
, so the excess is 2

5
.

T6: Since T6 has 2-fold rotational symmetry, we compute the weight received from vertices
u and v, then multiply by 2. This is 2((1

3
+ 6(1

4
)) + (2(1

3
) + 8(1

4
) + 4(1

2
))) = 13. The target

weight is 3(21
5
) = 63

5
, so the excess is 2

5
.

T7: Since T7 has 2-fold rotational symmetry, we compute the weight received from u, v,
and w, then multiply by 2. This is 2((1

3
+6(1

4
))+(1

3
+6(1

4
)+6(1

2
))+(1

3
+10(1

4
)+2(1

2
))) = 21.

The target weight is 5(21
5
) = 21, so the excess is 0.

T8: Since T8 has reflectional symmetry, we compute the weight received from w and z
plus twice the weight received from u and x. This is ((1

3
+8(1

4
)+4(1

2
))+(1

3
+12(1

4
)))+2((1

3
+

6(1
4
)) + (1

3
+ 6(1

4
) + 6(1

2
))) = 21. The target weight is 5(21

5
) = 21, so the excess is 0. �

Claim 2. After Phase 2 the tiles have excess at most:
T1: 0 T2: 7/10 T3: 0 T4: 0 T5: 0 T6: 2/5 T7: 0 T8: 0.

Proof. Since Phase 2 only increases the weight for copies of T1 and T3, the bounds from
Claim 1 remain valid for T2, T6, T7, and T8. By (R5), each copy of T1 ends with excess
0. Note that T3 has only a single long side. Since each copy ended Phase 1 with excess at
most − 3

10
, it ends Phase 2 with excess at most 0.

Consider a copy T of T4, and the tile T̂ that borders it along one of its two long sides. If
T̂ is a copy of T3, then T4 gives away 3

10
. So assume instead that T̂ is a copy of T4, T5, T7,

or T8. In this case, T saves at least 1
2
over the bound we computed in Claim 1. Specifically,
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(a) Each spindle can appear in at
most two 5-spindle blocks.

(b) Each spindle can appear in at
most three 6-spindle blocks.

(c) If a spindle appears in a 5-spindle
block, then it appears in at most two
6-spindle blocks.

Figure 10. Claim 3: Each missing spindle receives weight at most 1
2
.

an additional vertex at distance
√
3 from v is not in I. This means that v receives only one

half of the weight from each spindle with these two vertices as its top and bottom (rather
than all of it). So T saves 3

10
if T̂ is a copy of T3, and saves 1

2
otherwise. This savings

applies to both of the long edges of T4, so T4 saves at least 2( 3
10
) = 3

5
over the bound given

in Claim 1. Thus, each copy of T4 finishes with excess at most 0. A similar analysis holds
for T5. Now T5 has three long edges, and saves at least 3

10
along each of them, so finishes

with excess at most 2
5
− 3( 3

10
) = −1

2
. �

Claim 3. Each spindle ends with nonnegative weight.

Proof. If a spindle is trivial, then it begins and ends with weight 0. If a spindle is non-trivial
and not missing, then it begins with weight 1

2
. By (R2), it ends with weight 0. So we need

only consider missing spindles. By (R2), each such spindle finishes Phases 1 and 2 with
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weight −1
2
. So it suffices to show that in Phase 3 each missing spindle receives weight at

most 1
2
. Recall that a missing spindle receives weight 1

4
(from a copy of T2) for each 5-spindle

block containing it and weight 1
8
(from a copy of T6) for each 6-spindle block containing it.

Thus, we must bound the number of 5-spindle and 6-spindle blocks containing each missing
spindle.

First, if a missing spindle lies in two 5-spindle blocks, then it lies in no other 5-spindle or
6-spindle blocks; see Figure 10(A). So it receives weight at most 1

4
+ 1

4
= 1

2
. Further, each

missing spindle lies in at most three 6-spindle blocks. Such a spindle lies in no 5-spindle
blocks; see Figure 10(B). So it receives weight at most 1

8
+ 1

8
+ 1

8
≤ 1

2
. Finally, if a spindle

lies in both a 5-spindle block and a 6-spindle block, then it lies in at most one 5-spindle
block and at most two 6-spindle blocks; see Figure 10(C). So it receives weight at most
1
8
+ 1

8
+ 1

4
= 1

2
. �

Claim 4. In each 5-spindle block of a copy of T2, at least one spindle is missing.

Proof. We number the (spindle) vertices of a spindle as 1, 2, 3, where vertices 1 and 2 are
distance one from the bottom vertex, and vertex 3 is distance

√
3. We number the spindles

in a 5-spindle block as S1, . . . , S5, from left to right. Suppose that none of S1, . . . , S5 is
missing. Since the bottom vertices of S1 and S5 are in I, each of them must also have vertex
3 in I. In each of S2, S3, S4 vertex 3 is distance 1 from vertex 3 of either S1 or S5. Since
both of these vertices are in I, none of S2, S3, S4 can have vertex 3 in I. However, among
S2, S3, S4, the three copies of vertex 1 are pairwise adjacent; similarly for the three copies of
vertex 2. Hence, one of S2, S3, S4 must be missing. �

Claim 5. For each copy of T6, the following are true.
(a) For each 6-spindle block, either (i) at least one spindle is missing or (ii) at least two

spindles are trivial.
(b) If a copy of T6 has 2 trivial spindles on one side in the same direction, then that side

is bordered by a copy of T1 that is adjacent to at most two copies of T6.
(c) If a copy of T6 has 4 trivial spindles on one side, then that side is bordered by a copy

of T1 that is adjacent to only one copy of T6.

Proof. We prove each part in turn.
(a) The proof is similar to that of Claim 4. We number the spindles as S1, . . . , S6, from

left to right (with the topmost spindle as S5 and the bottom rightmost as S6). We
number the spindle vertices of each spindle 1, 2, 3, as in Claim 5. The only possible
trivial spindles are S5 and S6; so suppose that at least one of them is neither trivial
nor missing. Such a spindle must have vertex 3 in I. Whether this is S5 or S6, it
forbids S4 from having vertex 3 in I. Similarly, if S1 is not missing, it has vertex 3 in
I, which forbids both of spindles S2 and S3 from having vertex 3 in I. Now spindles
S2, S3, S4 all have vertex 3 forbidden from I. However, their copies of vertex 1 (resp.
vertex 2) are pairwise adjacent. Hence, one of S2, S3, S4 is missing.

(b) Recall from (a) that the only possible trivial spindles in the 6-spindle block are S5

and S6. If S6 is trivial, then the copy of T6 is bordered on its short side by a copy
of T1. Further, if S5 is also trivial, then that copy of T1 shares one of its sides with
another copy of T1; hence, it can be bordered by at most two copies of T6.
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(c) Each short side of a copy of T6 is crossed by two of its 6-spindle blocks. Recall that
each 6-spindle block has only two possible trivial spindles. Thus, if a copy of T6 has
4 trivial spindles on one side, then both of its 6-spindle blocks crossing that side must
have both possible trivial spindles. Now we apply (b) twice. So the copy of T6 is
bordered along this side by a copy of T1, and that copy of T1 is bordered along its
two other sides by other copies of T1. Hence, the copy of T1 is adjacent to only one
copy of T6. �

Claim 6. Each tile ends with excess at most 0.

Proof. By Claim 2, we only need to check copies of T2 and T6. Further, at the end of Phase
2, each copy of T2 has excess at most 7

10
and each copy of T6 has excess at most 2

5
. By

Claim 4, each copy of T2 gives weight 1
4
to a missing spindle in each of three directions.

Thus, its final excess is at most 7
10
− 3(1

4
) = − 1

20
.

If a copy of T6 has a missing spindle in all 4 directions, then it gives away to its missing
spindles at least 4(1

8
) = 1

2
≥ 2

5
. If T6 has a missing spindle in 3 directions, then it gives away

to its missing spindles at least 3(1
8
) = 3

8
. By Claim 5(a), in the direction where there is no

missing spindle, T6 has 2 trivial spindles on one side in the same direction. By Claim 5(b),
the copy of T6 is bordered by a copy of T1 that has at most 2 adjacent copies of T6. Hence
by (R5), the copy of T6 gives at least 1

2
(1
5
) = 1

10
to the copy of T1. Thus the copy of T6

finishes with excess at most 2
5
− 3

8
− 1

10
< 0.

If a copy of T6 has a missing spindle in 2 directions, then it gives away to its missing
spindles at least 2

8
. Using Claim 5(a) twice, we see that the copy of T6 has either 4 trivial

spindles on one side or else 2 trivial spindles (in the same direction) on each side. In the first
case, by Claim 5(c) and (R5), the copy of T6 gives 1

5
to the copy of T1. In the second case,

by Claim 5(b) and (R5), the copy of T6 gives away 1
10

+ 1
10
. Hence the copy of T6 finishes

with excess at most 2
5
− 1

4
− 1

5
< 0.

If a copy of T6 has a missing spindle in 1 direction, then it gives away to that missing
spindle 1

8
. Also, the copy of T6 has 4 trivial spindles on one side and 2 on the other. Hence,

from (R5) it gives away at least 1
5
+ 1

10
to adjacent copies of T1. So, it finishes with excess

weight at most 2
5
− 1

8
− 1

5
− 1

10
< 0. Finally, suppose the copy of T6 has no missing spindles.

Now by Claim 5(c), the copy of T6 is bordered on each side by a copy of T1 with only one
T6 neighbor. Hence, by (R5), the copy of T6 gives away 1

5
+ 1

5
, so finishes with excess at

most 0. �

Claim 6 completes the proof that we outlined prior to the discharging phases. Hence,
χf (R2) ≥ 76

21
. �

The lower bound 76
21
≈ 3.6190 can be improved slightly to 105

29
≈ 3.6207, as follows. We

replace 1
3
in (R1) with 13

42
and replace 3

10
in (R4) with 2

7
. A proof nearly identical to that

above shows that every tile (and spindle) finishes with excess at most 0, except for possibly
copies of T4. In order to accomodate copies of T4, we need to consider another type of
5-spindle block, shown in Figure 11. Although this proof can be completed, the details are
surprisingly complicated (the proof requires an additional 4 phases), so we decided the reader
would benefit more from the version presented here.
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Figure 11. An additional 5 spindle block, used in the proof that χf (R2) ≥ 105
29

.

The bound 105
29

seems to be the best possible using this method. The key obstruction to
further improvements is that we need weight at least 6 on each core vertex. If a core vertex
has less weight than the weight on an independent set among its spindle neighbors, then we
cannot justify the assumption that I intersects the core vertices in a maximal independent
set. This leads us to ask for the value of limd→∞ χf (G

′
d). Specifically, is it larger than

105
29

?

4. Coloring Variants and Open Questions

In this section, we discuss a few variants on the problem of coloring (or fractionally color-
ing) the plane. Typically, we either put restrictions on each color class, or else we consider
only a subset of the plane. We also include a few more open questions.

Falconer [6] proved that if we require color classes to be Lebesgue measurable, then any
proper coloring of the plane requires at least 5 colors. The existence of non-measurable sets
depends on the axioms of set theory we choose. In particular, when we drop the Axiom
of Choice, there are (appealing) extensions of ZF in which all sets of reals are Lebesgue
measurable [21]. So, basically, Falconer’s result says that we can never hope to construct a
4-coloring of the plane. In the case of fractional coloring, Székely [22] proved in 1984 that a
fractional coloring in which only measurable sets get non-zero weight must use total weight
at least 43

12
≈ 3.5833. Recently, this was improved by Oliveira Filho and Vallentin [5] to

≈ 3.725.

Question. Do the fractional chromatic number of the plane and the measurable fractional
chromatic number of the plane differ assuming ZFC?

The j-fold chromatic number χj(G) of a graph G is the least integer k so that it is
possible to assign each vertex a set of j elements from {1, . . . , k} such that adjacent vertices
get disjoint sets. Clearly, χf (G) ≤ χj(G)

j
, since we can assign each of the k color classes

weight 1
j
. Recently, Grytczuk et.al. [10] studied j-fold coloring of the plane. Among other

results, they generalized the construction of Hochberg and O’Donnell to give good j-fold
colorings for small values of j.

Interesting results have been proved about chromatic numbers of extensions of Q, the
first being Woodall’s result [23] that Q×Q is 2-colorable. Among other results, Fischer [7]
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showed that χ
(
Q(
√
3)×Q(

√
3)
)
= 3 and χ

(
Q(
√
11)×Q(

√
11)
)
≤ 4. The graphs G′d that

we constructed have all vertices in Q(
√
3,
√
11) × Q(

√
3,
√
11), so we have actually shown

that χf
(
Q(
√
3,
√
11)×Q(

√
3,
√
11)
)
≥ 76

21
. The natural extension of our construction is to

attach spindles at all rotations that are integer multiples of cos−1(5
6
), and this graph is still

contained in Q(
√
3,
√
11) × Q(

√
3,
√
11). Does this graph have larger fractional chromatic

number? We do not know.

Question. What is the fractional chromatic number of Q(
√
3,
√
11) × Q(

√
3,
√
11)? What

about its chromatic number?

Another intriguing direction of work is unit distance graphs with higher girth. Erdős [3]
asked for which k ≥ 3 there exist unit distance graphs of girth k with chromatic number 4.
In his Ph.D. thesis [17], Paul O’Donnell showed that the answer is all k ≥ 3. Mohar [15]
extended this question to chromatic number 5 and 6. Much like the chromatic number (and
fractional chromatic number) of the plane, this problem remains open.
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