
A common generalization of Hall’s theorem and Vizing’s
edge-coloring theorem

landon rabern

LBD Data

Miami University Colloquium
November 6, 2014

landon rabern 1 / 26



Hall’s theorem

given finite sets A1,A2, . . . ,An

a system of distinct representatives (SDR) is a choice of ai ∈ Ai for
all i where ai 6= aj for i 6= j

when can we pick an SDR?

if k of the sets together have fewer than k elements, we can’t

A1 = {1, 2}, A2 = {1, 2}, A3 = {1, 2}

Hall’s theorem: this is the only thing that can go wrong

SDR exists ⇔

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |I | for all I ⊆ {1, . . . , n}
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some card games
the simplest variation

Dealer vs. Player

the deck has just many copies of the high spade cards
Dealer makes 5 stacks of cards with no duplicates, all cards face-up
Player wins if he can pick a Royal Flush, one card from each stack
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some card games
example, a Player win
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some card games
example, a Dealer win
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some card games
winning condition

Player cannot win if there is a set of k stacks that together have
fewer than k different cards

Hall’s theorem says: Player wins otherwise
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some card games
making things harder for Dealer

this isn’t a fun game, far too easy for Dealer to win

to make a better game, we allow Player to modify some of the stacks

Player’s Move

Player can pick any card A from the deck and swap it for another card B
in one stack (not containing A).

Dealer’s Move

Dealer can (i) do nothing or (ii) swap A and B in one other stack.

Winning

Player wins if he can pick a Royal Flush at the start of one of his turns,
otherwise Dealer wins.
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some card games
example, a Player win

Player picks a King from the deck and swaps it for a Queen in the
first stack
Dealer can swap a King and Queen in one of the other stacks
Player wins no matter what Dealer does
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some card games
what was the difference?

in the top game, Dealer can prevent Player from increasing the
number of different cards in the first two stacks
in the bottom game, Dealer cannot prevent prevent Player from
increasing the number of different cards in the first three stacks
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some card games
necessary condition

if the same card appears on three stacks, Player can force the
addition of a new card to these stacks

it is not hard to show that this is essentially all Player can do

this suggests a necessary condition

Degree

The degree of a card C in a set of stacks S is the number of times C
appears in S . We write dS(C ) for this quantity.

Necessary Condition

If Player can win, then for every set of stacks S we must have∑
C∈

⋃
S

⌈
dS(C )

2

⌉
≥ |S |.
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some card games
intuition

Degree

The degree of a card C in a set of stacks S is the number of times C
appears in S . We write dS(C ) for this quantity.

Necessary Condition

If Player can win, then for every set of stacks S we must have∑
C∈

⋃
S

⌈
dS(C )

2

⌉
≥ |S |.

in Hall’s theorem, each C is ‘worth’ 1 in
∑

C∈
⋃

S

1 =
∣∣∣⋃ S

∣∣∣ ≥ |S |

Player can turn 2t + 1 of the same card into t + 1 different cards, so

C is ‘worth’
⌈
dS (C)

2

⌉
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some card games
Dealer’s strategy

given a set of stacks S with
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

Dealer’s strategy: maintain this invariant

this is good enough since then |
⋃
S | ≤

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S | always

if Player swaps A in for B, increasing
⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
, then dS(A)

and dS(B) both changed from even to odd
so, Dealer can swap A for B somewhere else, decreasing⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
Dealer has maintained

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S |

landon rabern 13 / 26



some card games
Dealer’s strategy

given a set of stacks S with
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

Dealer’s strategy: maintain this invariant

this is good enough since then |
⋃

S | ≤
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S | always

if Player swaps A in for B, increasing
⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
, then dS(A)

and dS(B) both changed from even to odd
so, Dealer can swap A for B somewhere else, decreasing⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
Dealer has maintained

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S |

landon rabern 13 / 26



some card games
Dealer’s strategy

given a set of stacks S with
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

Dealer’s strategy: maintain this invariant

this is good enough since then |
⋃
S | ≤

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S | always

if Player swaps A in for B, increasing
⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
, then dS(A)

and dS(B) both changed from even to odd
so, Dealer can swap A for B somewhere else, decreasing⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
Dealer has maintained

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S |

landon rabern 13 / 26



some card games
Dealer’s strategy

given a set of stacks S with
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

Dealer’s strategy: maintain this invariant

this is good enough since then |
⋃
S | ≤

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S | always

if Player swaps A in for B, increasing
⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
, then dS(A)

and dS(B) both changed from even to odd

so, Dealer can swap A for B somewhere else, decreasing⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
Dealer has maintained

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S |

landon rabern 13 / 26



some card games
Dealer’s strategy

given a set of stacks S with
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

Dealer’s strategy: maintain this invariant

this is good enough since then |
⋃
S | ≤

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S | always

if Player swaps A in for B, increasing
⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
, then dS(A)

and dS(B) both changed from even to odd
so, Dealer can swap A for B somewhere else, decreasing⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉

Dealer has maintained
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

landon rabern 13 / 26



some card games
Dealer’s strategy

given a set of stacks S with
∑

C∈
⋃

S

⌈
dS(C )

2

⌉
< |S |

Dealer’s strategy: maintain this invariant

this is good enough since then |
⋃
S | ≤

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S | always

if Player swaps A in for B, increasing
⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
, then dS(A)

and dS(B) both changed from even to odd
so, Dealer can swap A for B somewhere else, decreasing⌈
dS (A)

2

⌉
+
⌈
dS (B)

2

⌉
Dealer has maintained

∑
C∈

⋃
S

⌈
dS(C )

2

⌉
< |S |

landon rabern 13 / 26



some card games
winning condition

this necessary condition is also suffcient

Winning Condition

Player can win if and only if for every set of stacks S we have∑
C∈

⋃
S

⌈
dS(C )

2

⌉
≥ |S |.
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some card games
proof idea

1 Player looks for a set of card types that give a system of distinct
representatives of all the stacks containing them

2 Player calls those stacks done and never plays with those card types
again
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some card games
proof idea

3 if no such set of card types exists, then Hall’s theorem shows that
there is at least one card appearing on none of the remaining stacks

4 but then some card appears at least thrice, so Player can increase the
number of card types in the stacks

5 goto step 1
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A generalization of Hall’s theorem
making it harder for Player

allow Dealer to make more swaps in response to Player’s move

for each t ≥ 1, the t-game allows Dealer to make up to t swaps

Winning Condition

Player can win in the t-game if and only if for every set of stacks S we
have ∑

C∈
⋃

S

⌈
dS(C )

t + 1

⌉
≥ |S |.

Hall’s theorem is the winning condition in the (k − 1)-game when
there are k total stacks:

1 ≤ dS(C ) ≤ k , so
⌈
dS (C)
t+1

⌉
= 1

so, the sum equals |
⋃
S |

Player’s moves are useless
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edge coloring
setup

assign colors to the edges of a graph so that incident edges get
different colors

how few colors can we use?

Vizing’s theorem

Any simple graph can be edge-colored using at most one more color than
its maximum degree.
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edge coloring
proof of Vizing’s theorem

proceed by induction on the number of vertices

remove a vertex and edge-color the rest with one more color than its
maximum degree
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edge coloring
proof of Vizing’s theorem

exchanging colors on a two-colored path is just a Player move
followed by a Dealer move

we can make any of Player’s legal moves this way, so if the winning
conditions are satisfied, Vizing’s theorem is true

each stack has at least two colors, so counting the ‘cards’ in two ways
we get for each set of stacks S ,∑

C∈
⋃

S

dS(C ) ≥ 2|S |

so, we have the desired winning condition∑
C∈

⋃
S

dS(C )

2
≥ |S |
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summary

we introduced a simple card game

Player can pick any card A from the deck and swap it for another card
B in one stack (not containing A)
Dealer can (i) do nothing or (ii) swap A and B in one other stack
Player wins if he can pick a Royal Flush at the start of one of his turns,
otherwise Dealer wins

Player can win exactly when a Hall-like condition is satisfied

Vizing’s edge-coloring theorem is an easy corollary

taking it further

most other classical edge-coloring results follow easily
generalizes easily to multigraphs
a more general game unifies much of edge-coloring theory
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the more general game

Fixer vs. Breaker

played on a multigraph G

assign a list of colors L(v) to each vertex

let the pot be
⋃

v∈V (G) L(v)

Fixer wins if at the start of his turn he can construct an edge-coloring
π of G where π(xy) ∈ L(x) ∩ L(y) for each xy ∈ E (G )

Fixer’s turn

Pick α in the pot and v ∈ V (G ) with α 6∈ L(v) and set
L(v) := L(v) ∪ {α} − β for some β ∈ L(v).

Breaker’s turn

If Fixer modified L(v) by inserting α and removing β, then Breaker can
either do nothing or pick w ∈ V (G − v) and modify its list by swapping α
for β or β for α.
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the more general game
necessary condition

Definition

For C ⊆ Pot(L) and H ⊆ G , let HL,C be the subgraph of H induced on the
vertices v with L(v) ∩ C 6= ∅. For H ⊆ G , put

ψL(H) =
∑

α∈Pot(L)

⌊
|HL,α|

2

⌋
.

Superabundance

We say that (H, L) is abundant if ψL(H) ≥ ‖H‖ and that (H, L) is
superabundant if for every H ′ ⊆ H, the pair (H ′, L) is abundant.

Necessary Condition

If Fixer can win, then (G , L) is superabundant.
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the more general game
adding a chronicle

we can get more power for Fixer and still imply edge-coloring results
by modifying the game slightly

we do this by adding a chronicle

basically, this ensures that Breaker’s moves are consistent with being
embedded some graph

the chronicle C is a multigraph with vertex set V (G ) ∪ {∞} that will
be updated as the game progresses. Each edge of C will be labeled
with a doubleton of colors {α, β} ⊆ Pot(L). At the start of the game
C is edgeless.

Breaker’s turn

If there is a vx ∈ E (C −∞) labeled {α, β}, then Breaker swaps α and β
at x . If instead v∞ ∈ E (C ), Breaker does nothing. Otherwise, Breaker
can do nothing, or pick w ∈ V (G − v) with |{α, β} ∩ L(w)| = 1 such that
no edge incident to w in C has label {α, β}, and swap α and β at w .

landon rabern 24 / 26



the more general game
adding a chronicle

we can get more power for Fixer and still imply edge-coloring results
by modifying the game slightly

we do this by adding a chronicle

basically, this ensures that Breaker’s moves are consistent with being
embedded some graph

the chronicle C is a multigraph with vertex set V (G ) ∪ {∞} that will
be updated as the game progresses. Each edge of C will be labeled
with a doubleton of colors {α, β} ⊆ Pot(L). At the start of the game
C is edgeless.

Breaker’s turn

If there is a vx ∈ E (C −∞) labeled {α, β}, then Breaker swaps α and β
at x . If instead v∞ ∈ E (C ), Breaker does nothing. Otherwise, Breaker
can do nothing, or pick w ∈ V (G − v) with |{α, β} ∩ L(w)| = 1 such that
no edge incident to w in C has label {α, β}, and swap α and β at w .

landon rabern 24 / 26



the more general game
adding a chronicle

we can get more power for Fixer and still imply edge-coloring results
by modifying the game slightly

we do this by adding a chronicle

basically, this ensures that Breaker’s moves are consistent with being
embedded some graph

the chronicle C is a multigraph with vertex set V (G ) ∪ {∞} that will
be updated as the game progresses. Each edge of C will be labeled
with a doubleton of colors {α, β} ⊆ Pot(L). At the start of the game
C is edgeless.

Breaker’s turn

If there is a vx ∈ E (C −∞) labeled {α, β}, then Breaker swaps α and β
at x . If instead v∞ ∈ E (C ), Breaker does nothing. Otherwise, Breaker
can do nothing, or pick w ∈ V (G − v) with |{α, β} ∩ L(w)| = 1 such that
no edge incident to w in C has label {α, β}, and swap α and β at w .

landon rabern 24 / 26



the more general game
adding a chronicle

we can get more power for Fixer and still imply edge-coloring results
by modifying the game slightly

we do this by adding a chronicle

basically, this ensures that Breaker’s moves are consistent with being
embedded some graph

the chronicle C is a multigraph with vertex set V (G ) ∪ {∞} that will
be updated as the game progresses. Each edge of C will be labeled
with a doubleton of colors {α, β} ⊆ Pot(L). At the start of the game
C is edgeless.

Breaker’s turn

If there is a vx ∈ E (C −∞) labeled {α, β}, then Breaker swaps α and β
at x . If instead v∞ ∈ E (C ), Breaker does nothing. Otherwise, Breaker
can do nothing, or pick w ∈ V (G − v) with |{α, β} ∩ L(w)| = 1 such that
no edge incident to w in C has label {α, β}, and swap α and β at w .

landon rabern 24 / 26



the more general game
adding a chronicle

we can get more power for Fixer and still imply edge-coloring results
by modifying the game slightly

we do this by adding a chronicle

basically, this ensures that Breaker’s moves are consistent with being
embedded some graph

the chronicle C is a multigraph with vertex set V (G ) ∪ {∞} that will
be updated as the game progresses. Each edge of C will be labeled
with a doubleton of colors {α, β} ⊆ Pot(L). At the start of the game
C is edgeless.

Breaker’s turn

If there is a vx ∈ E (C −∞) labeled {α, β}, then Breaker swaps α and β
at x . If instead v∞ ∈ E (C ), Breaker does nothing. Otherwise, Breaker
can do nothing, or pick w ∈ V (G − v) with |{α, β} ∩ L(w)| = 1 such that
no edge incident to w in C has label {α, β}, and swap α and β at w .

landon rabern 24 / 26



the more general game
adding a chronicle

Breaker’s turn

If there is a vx ∈ E (C −∞) labeled {α, β}, then Breaker swaps α and β
at x . If instead v∞ ∈ E (C ), Breaker does nothing. Otherwise, Breaker
can do nothing, or pick w ∈ V (G − v) with |{α, β} ∩ L(w)| = 1 such that
no edge incident to w in C has label {α, β}, and swap α and β at w .

Chronicle update

Remove all edges of C whose label intersects {α, β} in exactly one color.
If Breaker swapped α and β at z and there is no vz edge in C labeled
{α, β}, then add one. Otherwise, if Breaker did nothing and there is no
v∞ edge in C labeled {α, β}, then add one.
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the more general game
an equivalent game

Necessary Condition

If Fixer can win the chronicled game, then (G , L) is superabundant.

there is a simpler-looking game that is equivalent to the chronicled
game

Equivalent game

Fixer picks different colors α, β ∈ Pot(L). Let S be the w ∈ V (G ) with
|{α, β} ∩ L(w)| = 1. Breaker picks a partition P1, ...,Pk of S where
|Pi | ≤ 2 for all i . For each i , Fixer either chooses to swap α and β on all
vertices in Pi or on no vertices in Pi .
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