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1 Edges in list-critical graphs

A graph G is k-list-critical if G is not (k − 1)-choosable, but every proper subgraph of G is
(k − 1)-choosable. Replace ‘(k − 1)-’ with ‘online (k − 1)-’ and ‘k-’ with ‘online k-’ in the
previous sentence and read it.

Conjecture 1. Every incomplete k-list-critical graph has average degree at least

k − 1 +
k − 3

(k − 1)2
.

Background. The connected graphs in which each block is a complete graph or an odd
cycle are called Gallai trees. Gallai [11] proved that in a k-critical graph, the vertices of
degree k−1 induce a disjoint union of Gallai trees. The same is true for k-list-critical graphs
[1, 10]. This quickly implies a lower bound on the average degree of k-list-critical graphs of

k − 1 +
k − 3

k2 − 3
.

In [21], R. improved this to

k − 1 +
k − 3

k2 − 2k + 2

using a lemma from Kierstead and R. [14] that generalizes a kernel technique of Kostochka
and Yancey [15]. As noted at the end of [21], a small improvement to the argument would
yield Conjecture 1. This is now known to hold for k ≥ 6, only the k = 4 and k = 5 cases
remain.

Conjecture 2. Every incomplete online k-list-critical graph G has

2 ‖G‖ ≥ (k − 1) |G|+ k − 3.

Background. Dirac [9] proved this for k-critical graphs. Kostochka and Stiebitz [16] proved
it for k-list-critical graphs. Their proof does not seem to generalize. When |G| is large
compared with k, the conjecture holds by Gallai-type bounds on the average degree of online
k-list-critical graphs [13, 2].
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1.1 The 5
6 bound

Conjecture 3. Every vertex-transitive graph has χ ≤ max
{
ω,

⌈
5∆+3

6

⌉}
.

Background. In [3], the following was proved

• the conjecture holds for the fractional chromatic number χ∗,

• the conjecture holds with
⌈

5∆+3
6

⌉
replaced by ε(∆ + 1) for some ε < 1,

• the conjecture holds both if Reed’s ω,∆, χ conjecture and the strong 2∆-colorability
conjecture hold for vertex-transitive graphs (only strong 5

2
∆-colorability is required),

Does the conjecture hold for Cayley graphs?

Conjecture 4. Every line graph (of a multigraph) has χ ≤ max
{
ω,

⌈
5∆+3

6

⌉}
.

Background. In [18] this was proved with
⌈

5∆+3
6

⌉
replaced by 7∆+10

8
. Conjecture 14 in

[18] that implies this conjecture is now known to be false. This conjecture is true, recently
proved with Dan Cranston.

2 Around Planar graphs

Conjecture 5. Every graph with no K5-subdivision is 2-fold 9-colorable.

Background. In [4], Cranston and R. gave a short proof of this conjecture with K5-minors
excluded instead ofK5-subdivisions (which also follows from the Four Color Theorem). Hajós
conjectured that every graph is (k−1)-colorable unless it contains a subdivision of Kk. This
is known to be true for k ≤ 4 and false for k ≥ 7. The cases k = 5 and k = 6 remain
unresolved.

3 Maximum degree, clique number and colorings

3.1 Around Borodin-Kostochka

Conjecture 6. Every graph with χ ≥ ∆ ≥ 8 contains a K3 ∨H where H is some graph on
∆− 3 vertices.

Background. By results in [8], for ∆ ≥ 9 the existence of K3 ∨ H implies the existence
of K∆. So, this (seemingly weaker) conjecture for ∆ ≥ 9 implies the Borodin-Kostochka
conjecture. The one known connected counterexample to the Borodin-Kostochka conjec-
ture for ∆ = 8 is a 5-cycle with each vertex blown up to a triangle. This graph is not a
counterexample to Conjecture 6.

Conjecture 7. Every graph with χ ≥ ∆ contains K∆−3.

Background. Results in [5] show that this holds with K∆−4 instead of K∆−3. Moreover,
[5] proves the conjecture for all but ∆ ∈ {6, 8, 9, 11, 12}. Reed’s conjecture [22] that every
graph satisfies χ ≤

⌈
ω+∆+1

2

⌉
implies this conjecture with K∆−2 instead of K∆−3.
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Conjecture 8. Every graph with χ ≥ ∆ either contains K∆ or contains a K∆−4 with all
∆-vertices.

Background. Results in [5] show that this holds with K∆−5 instead of K∆−4. For ∆ ≤ 7,
the conjecture holds by [19, 17]. Also by [5], it holds when ∆ = 3r + 1 for r ≥ 3.

Conjecture 9. Every graph with ∆ ≥ 8 and ω < ∆ is 2-fold (2∆− 1)-colorable.

Background. The one known connected counterexample to the Borodin-Kostochka conjec-
ture for ∆ = 8 is a 5-cycle with each vertex blown up to a triangle. This graph is not a
counterexample to Conjecture 9.

Conjecture 10. Every graph with θ ≥ 10 and ω ≤ θ
2

is
⌊
θ
2

⌋
-choosable.

Background. Here θ is the Ore degree give by θ(G) := maxxy∈E(G) d(x) + d(y). This
conjecture holds for ordinary coloring [12, 19, 17, 20]. In [14], the conjecture is proved for
θ ≥ 18 for both list-coloring and online list-coloring. Further lowering of θ would follow from
improved bounds on average degree of list-critical graphs [13].

Conjecture 11. Every claw-free graph with ∆ ≥ 9 and ω < ∆ is (∆− 1)-choosable.

Background. In [7], this was proved for ordinary coloring. In [6], the conjecture was proved
for ∆ ≥ 69. Also, [6] proved that the full conjecture follows from the line-graph case.

Conjecture 12. There is a polynomial time graph algorithm that finds either a (∆ − 1)-
coloring or a K∆−3.

Background. In [5], the following was proved

• the conjecture holds with K∆−3 replaced by K∆−4,

• the conjecture holds for ∆ ≥ 25 (the proof uses algorithmic versions of the local
lemma),

• the conjecture holds when ∆ = 3r + 1.
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