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Part 1

PRELIMINARIES



1. Notation

All graphs in this theslis are finite and undirected
with no loops or multiple edsges. Let V(G) denote the set of
vertices of G. The edzes of G are 2-element subsets of
V(G), and the éet of all edges of G is E(G). Two
vertices u,v are adjacent if fu,v}€E(G).

For any set X, we let |X| denote the cardinality
of X. Throughout this thesis, [V(G)] will be denoted
by p, and we shall assume that p>1l.

The number of edges incident with a vertex v e V(G)
is called the degree of v in G, and is denoted degG(v).

We define

A(G) = max degG(v)
vev(G)
and
6(G) = min degG(v).

veV(G)
The comvlement of G, denoted Gc, is the graph on the
same vertex set V(G&, in which §{u,v} ¢ 8(G%) if and only
if fu,v} € E(G), where u,ve€v(G). Clearly, for any
graph G,

A(G%) +8(G) +1 = p.



For two gravhs G and H with [V(H)l < [v(G)| , an

embedding of H into G 1is an injection
m: V(H) —V(G)

that maps edges of H into edges of G. If such an
embedding exists, we say that H is a subgraph of G.
Note that when IV(H)l = |V(G)l, H is a subgraph of G
if and only if GS is a subgraph of HC.

Brackets will be used with two meanings, depending
upon their context. For‘any rational number r, [r]
denotes the greatest integer less than or equal to r.
For a subset X € V(G), we denote by G[X] the subgraph
of G induced by X: thus, V(G[X]) = X and if u,veéX,
then ju,vi€ E;‘(G[X_]) if and only if iu,vi€ Z(G). We
denote by G - X the graph G[V(G) - X].

A complete graph on n vertices is a graphAon n

vertices in which any pair of distinct vertices are

ad jacent. Such a graph will be denoted by Kn. A

complete bipartite sravh on disjoint sets of n and m

vertices is the graph on these vertices in which each
vertex in the n-set is adjacent to every vertex 1in the
m-set. Such a graph is denoted Kn,m'
A maximal complete subgraph induced by some ver-

tices of a graph is called a clique. A maximal com-

vlete bipartite induced subgraph is called a bicligue.



A set X of vertices is stable if G[X] is edgeless.
The maximum cardinality of all stable sets X & V(G) 1is

denoted B(G), and is called the stability number of G.

The maximum number of vertices in a clique of G, denoted

0(G), is called the clique number of G. Clearly,

0(G) = p(G°); 6(G°) = B(G).
A coloring of G is a partition of V(G) into
stable subsets, where the partition is unordered and

admits null sets. A set X € V(G) is monochromatic in

a coloring of G if all vertices of X have the same
color: 1i.e., they lie in the same set in the coloring

partition. The chromatic number X(G) of G is the

fewest possible number of sets in a coloring of G.

A path in G is a sequence of vertices Vy,Vy,ee.,Vy
in V(G) for n>1 such that

(1.1) vy =V implies either i=j or fi,Jj3 = 10,ni;

(1.2) for 1=1,2,...,n, v, 1is ad jacent in G to v, 5.
The vertices A and v, are said to be joined by the path.

If v we say that the path is closed; otherwise,

0= "'n’
the path is open. A graph is connected 1if any two ver-
tices are joined by a path. A component of G is a maxi-
mal connected subgraph of G. A vertex of a connected
grapn is a cutvertex if its removal disconnects the graph.

A polygon is a subgraph determined by a set of vertices

and edzes joining consecutive vertices 1in a closed path.



The girth is the number of edges of the polygon. A

polygon with odd girth is an odd polygon. An arc is a
subgraph determined by the set of vertices and edges
joining consecutive vertices in an open path. An odd arc
is an arc with an odd number of edges.

A tree is a connected graph having no polysaons.

A e-graohlis a graph consisting of three distinct
arcs, joining the same two vertices and having no other
common vertices.

To simplify notation, we shall denote the single-
ton set 3x§ by x.

Given a set X and a subset ?xl....,xn}, let
(xl Xp oo xn) denote the cyclic permutation that sends
to x

X 1<i<n, that sends X, to Xq and that fixes

i 141’
all other elements of X. Given a permutation a: X—>X
and a function m: Y —»X, for sets X and Y, we denote
by am the composition of a andmwhich maps y€Y to
a(n(y)) € X.

Given a set X and a finite seguence xl’XZ""'xn of
members of X, such that xi=:xj. i<j imply xi=:x1+1=
cor=Xg, let (xl Xo e xnr denote the cyclic permuta-

tion obtained by deleting from Xl'XZ”"lxn the terms

which have previously appeared in the sequence.



2. Introduction

Two problems are considered in this dissertation.
They concern somewhat separate topics, but both depend
upon degree constraints, and there are several points
of overlap. First, we consider the problem of estimating
the chromatic number X(G), knowing A(G) and 6(G).
Then, we consider the problem of giving sufficient
conditions, in terms of A(H) and A(G®), for a graph
H on p vertices to be a subgraph éf a graph G, also on
p vertices.

The basic result in the literature on the coloring
problem is Brooks' Theorem [5]:

Theorem 2.1 Let G be a graph with maximum degree

N(G). We have

(2.1) X(G) < A(G) +1.
If A(G) =2, then equality holds in (2.1) if and only if
G contains an odd polygon. If A(G) # 2, then equality

holds if and only if G contains a clique KQ(G)+1'

Note that if A(G) =2, an odd polygon of G is
necessarily a connected comvonent of G. Also, a clique
KA(G)+1 1s necessarily a component of G, Such components,

wnich- force equality in (2.1), are called BA(G)—components.

6



Since each component of a graph can be colored
independently, we can assume without loss of generality,
that G is connected.

We give a proof of Brooks' Theorem by induction
on A(G), and in so doing, we obtain new infofmation.

For instance, we show that if G is not a qﬂ(G)—component,
then there 1s a.coloring of G in A(G) colors in which
some monochromatic set contains B(G) vertices. Also,

we characterize those connected graphs G for which there
is a coloring of G in A(G) colors such that some mono-
chromatic set consists solely of vertices of degree A(G).

In section 4 we consider the problem of partitioning
the vertices of a graph into sets Xl’XZ""’Xn such that
the numbers ZB(G[Xi]). {-1,2,...,n satisfy various
constraints. One result will be used for a problem on
subgraphs. Another result is a new proof of a partition
theorem of Lovasz [11].

We combine, in section 5, this partition theorem
of Lovasz with Brooks' Theorem to give an estimate of
X(G) in terms of A(G) and (G). The result improves
(2.1) when 6(G) < 3 A(G).

In section 6 we consider further the interrelation-
ship between %(G), A(G) and 6(G).

In [6], we considered the problem of giving a

sufficient condition, based upon A(H) and A(G®), for



H to be a subgraph of G. We continue here to obtain
sharper resulté.

Oour first result, which has recently been indepen-
dently obtained by Sauer and Spencer [14], is that if
G and H are graphs on p vertices satisfying

2A(G%)A(H) < p-1,
then H is a subgraph of G. This is best possible only
when A(G®) =1 or A(H)=1. We continue, in section 7,
by discussing a conjectuéed improvement of this result
that would be best possible if true, and we consider
various special cases treated in the literature.

In section 8, we give a slightly sharper result
when A(H) = 2 whose proof 1s not long.

In section 10, we show that if A(H) =2 and if

AG®%) < ’]3"P - max( 9, %PI/B)-
then H is a subgraph of G. The coefficlent % is best
possible. However, the proof is quite long. In the
speclal case where ﬁvmry component of H is either K3,
KZ’ or Kl, we obtain an even sharper result in section
9. We show that if A(G®) < }’—5—1- and if such a graph H
is not a subgraph of G, then G lies in one of two classes

which do not have H as a subgraph. We characterize

these classes.



Part II

CHROMATIC NUMEER



3. Brooks' graph-coloring theorem and

the stability number

In this section, we shall consider a connected
graph H, with at least one edge. To simplify nota-
tion, we denote A(H) by h.

A maximum stable su?set of the set of vertices

of degree h will be called a superstable set,

A Bh-component of H was defined in section 2.
The equivalence of (3.4) and (3.6) of Theorem 3.2
below is Brooks' Theorem (Theorem 2.1).

Albertson, Bollobas, and Tucker [1] showed first
that with two exceptions Hl and HZ’ defined below,
every graph H with A(H) = h and with no subgréph
Kh has stability number

g(H) > IV(H)] /h,
and they conjectured that such graphs H have an
h-coloring in which some monochromatic set has nmore
than JV(H)]/h vertices. Second, they proved this
conjecture for graphs that are not regular of degree
h. Theorem 3.2, combined with the first result of
Al bertson, Bollobés, and Tucker shows that this con-

jecture is true, even for regular graphs.

10
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The two exceptional graphs, H1 and HZ’ may be
defined as follows: 1let V(Hl) be the integers modulo
8, and let {v.wieE(Hl) if and only if

v-w=1,2,6, or7 (mod 8).
Let V(HZ) be the integers modulo 10, and let
v,w} € E(HZ) if and only if
v-ws=1,4,5,6,0r9 (mod 10).

A Brooks tree is any graph H with A(H) =h that

arises from a tree T satisfying A(T) <h by the replace-
ment of each vertex of T with

(a) an odd polygon if h = 3;

(b) a clique K 1f h £ 3,
such that if x and y are adjacent vertices of T, then
the polygons or cliques substituted for x and y are
joined by an edge whose removal disconnects H. Thus,

K. is the only Brooks tree with h=1; odd arcs with

2
at least 3 edges are the only Brooks trees with h=2;
and if h2;3; then a Brooks tree is not a tree in the

usual sense of the word.

Theorem 3.1 Let H be a connected graph with

A(H) = h > 1. The following are equivalent:
(3.1) H is a Bh-component, or a Brooks tree;

(3.2) There is no superstable set S such that
H-S can be colored in h -1 colors;
(3.3) There is no stable set S of vertices of de-

ree h su h that H« 58 can be colored in h - 1 colors,
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We also have

Theorem 3.2 Let H be a connected graph with

A(H) = h > 1. The following are equivalent:

(3.4) H is a B _-component;

h
(3.5) There is no maximum stable set S, sucnh
that H- S can be colored in h-1 colors;
(3.6) There is no h-coloring of H.

Proof of Theorem 3.2 from Theorem 3.1: For

N(H) <2, the theorem 1s .easily verified. Assume
therefore, that A(H) 2> 3.

We show that if (3.1), (3.2), and (3.3) are equi-
valent for A(H) =h, then (3.4), (3.5), and (3.6) are
also equivalent for A(H)=h. Since (3.4) implies (3.6) and
(3.6) implies (3.5), it suffices to prove that (3.5)
implies (3.4) if (3.1), (3.2), and (3.3) are eduivalent.

Adjoin to H a set V of Z (h- degH(v)) vertices
disjoint from V(H), where the sum runs over all v € V(H).
We join each vertex v of H to exactly h-—degH(v) ver-
tices of V, such that no vertex of V is joined to more
than one vertex of H. Denote the resulting graph H'.

Then,
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(3.7) H'[V(H)] = H;

(3.8) Any v &€V(H) has degree h in H';

(3.9) Any veV has degree 1 in H'.

By (3.7) and (3.8), a superstable set S in H' is
a maximum stable set in H. Hence, (3.5) for H implies
(3.2) for H', whence by (3.1); either H' is a B -com-
ponent, or it is a Brooks tree. Since Brooks trees
have vertices of degree h-1, conditions (3.8), (3.9),
and h>3 imply that H' is not a Brooks tree. Thus,
H' is a Bh—component, and therefore, has no vertices
of degree 1, whence H=H'. This proves (3.4), and thus
the equivalence of (3.4), (3.5), and (3.6). Hence,
Theorem 3.2 follows from Theorem 3.1l.

Proof of Theorem 3.1l: Again, we may suppose that

h>3. Since (3.1) implies (3.3) and (3.3) implies (3.2),
it suffices to show that (3.2) implies (3.1).

Suppose inductively that the theorem is true for
all graphs G with A(G) <h. Then Theoren 3.2 is true
for such graphs G. Let H be a graph with A(H) =h
such that H does not satisfy (3.1), and such that for
any superstable set S, H-S has no (h-1)-coloring.

For a given superstable set S, Theoren 3.2 and

A(H-S) <h-1
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imply that either H- S can be colored in h -1 colors,

or H-S has a B -component. We have already preclu-

h-1 .
ded the first possibility. Hence, H-S has a Bh_l—com-
ponent. Without loss of generallity, we shall choose

S to be a superstable set that minimizes the number of
Bh_l-components in H-S.

Suppose that a vertex s €V(H) is in no By _j-com-
ponent in H- S, regardless of the choice of a super-
stable set S that minimizes the number of Bh_l-compo-
nents in H-S. Since H is connected, such a vertex s
exists that is adjacent to a vertex v lying in a
Bh_l-component C of H- S, for some such 3. Since the
only vertex not in C that is adjacent to v lies in S,
we must have s€S., Then S4+v-s 1s a superstable set,
and either H- (S+ v - s) has one fewer Bh_l-component
than H - S, contrary to the choice of 3, or s lies in a
Bh_l-component of H- (S4+v-s), contrary to the choilce

of s. Hence, by contradiction, all vertices of H lie

in B -components 6f H- S, for suitable S.

h-1
Let P be a polygon in H with the property that
there 1s no superstable set S such that a Bh_l-com—

ponent of H-S contains P. If h=3, any polygon of
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aven pirth will do; ntherwise, any polyzon not contained
in a clique suffices. We will show that 1if H is not a

Bh—component or a Brooks tree, then such a P must exist.

If P does not exist, then
(3.10) If P' is a polygon in H and if h=3, then
P' haz odd girth
and
(3.11) If P' is a polygon in H and h> 4, then
P'.is Pﬁﬂﬁ&éﬂed in a clique.
Suppose, by way of contradiction, that there are dis-
tinct overlapping subgraphs C1 and C2 of H, where Ci

is a B -component of H"Si’ for some superstable

h-1

set Si' If h>4, then Cl and C2 are cliques on h ver-

tices each. Since Cl and C, overlap, &(H) =h forces
IV(Cl)~»V(CZ)| < h4 1.

Since C, and C., are distinct, we have equality, and

1 2
hence H[V(Cl)\JV(CZ)] is either isomorphic to Kh+l or

to K minus an edge. In the first case, H is a

h41

Bh—component. In the second case, let P' be a polygon

on 4 vertices in H[V(Cl)~JV(CZ)] containing the 2 non-
ad jacent vertices. This violates (3.11). If h=3, then

C, and C

1 , are overlapping odd polygons, and h<.4
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forces them to overlap in an edge. Then Clv C2 contains
a 6-graph, and hence an even polygon.  Thus, (3.10) is
violated. Hence, if P does not exist, then, since
each vertex of H lies in a Bh_l-component of H-S for
a suitable superstable set S, V(H) can be partitioned
into sets Vl'VZ”"’Vn' such that H[Vi] is a Bh_l-com—
ponent of H-S, for suitable superstable S. All poly-
gons of G are contained in these H[Vi]. Moreover, H
is connected, and so 1tiis easily seen in thls case
that if (3.10) and (3.11) hold, then H must be a Brooks
tree or a Bh—component. This is contrary to assumption,
and we may therefore conclude that P does exist.
To prove the theorem, we will derive a contradiction
from the existence of P.

Let C, be a B

0 h-1

CO intersects P, and such that So is superstable and

chosen to minimize the number of Bh_l—components in

-component of H- S, such that

H-SO. Since the d?gree of any vertex of C0 in H--S0
is h-1, and since, A(H) =h, an edge of P lies in
E(CO). Since P is not contaired in Cg, which is an
induced subgravh of H, an edge of P lies outside E(CO).

Tnerefore, there is a vertex v of V(P)"V(CO) having

one incident edge in E(Co) and the other incident edge
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{v,s% outside E(CO). Since CO is a component of H-SO,
we have s €S5;. '
f verti
Define a sequence Vl'sl’VZ'SZ""’vm'Sm of vertices

along P as follows: Let

Vl = V3 Sl = S;

For each 1=1,2,...,m-1, there is a superstable set

S, = S

i 1-1+ 74~ 53

ant a (unigue) B, _j-component C, of H--Si containing

Shldoe

+ -
i° If for some 1, si is not in a Bh-l component of
H"Si’ then H--Si has fewer Bh_l—components than H-SO,
contrary to our choice of SO. The polygon P intersects

s

Ci in a path starting at Sy and ending at a vertex of Si'

which we shall call vi+1. Thus, we have determined a
vertex S3,1¢€ V(P) S, that is ad jacent in P to Vil
and is not in C,. Since v, is adjacent to h-1

i i+l
vertices in C.1 also, degH(vi+l) = h. Thus, since S,
is superstable,

S —Si+v s

141 © i+l T Cisl
is also a superstable set. We terminate the sequence

at the first vertex s (m>1) that is adjacent to a

vertex of the original Bh_l-component Co-of H-So.

To see that sm exists, note that P determines a closed
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path, and the first vertex along that path after v and
s that is adjacent to a vertex of the qriginal Bh-l'
component is necessarily in SO’ and hence in S.1 for
each 1 <m.

Of course, since sme Sm-l is the first vertex in
the sequence to be adjacent to a vertex of V(CO). the
vertices of V(Co-v) have not been moved into the super-

stable set S as 1 runs from 0 to m-1, and no vertices

1
ad jacent to vertices of CO have been moved out of the
superstable set. Thus, in the Bh_l-component of H--Sm
containing Sm and CO-v, any vertices other than Sn
or V(CO-V) would be adjacent to s_ only. But no
vertex of a Bh_l-component is a cutvertex, and so Sy
and V(CO-v) together induce a Bh_l-component of H-Sm.
Therefore, we must have

N(sm)--vm = N(v) - s,
where N(v) denotes the set of vertices of H adjacent

to v.

If Cy is a poly/gon of girth at least 5, then s 1is
ad jacent to two nonadjacent vertices X%, of degree
h=73 that comprise N(v) -s. Since S is the only
vertex in S0 to which xl and x2 are adjacent,

SonJ{xl,x23 ~ Sp is a bigzger superstable set than SO’

contrary to the maximality of SO.



If CO

vertex of Co-vi. If vy and s, are ad jacent, then
m=1, and V(Co)q-sm induces a clique Kh+l in H. Since
H is connected, Kh+l is necessarily all of H, a case
excluded since (3.1) is false. Suppose, therefore,
that Sh and v, are not adjacent. Let x be a member

of the equal sets V(Cm-sm) = V(CO-V). ' Then
H-—(SO4.x-sm) has fewer Bh_l—components than H -5,

and S +X - s, is a superstable set. Since this

0
contradicts the choice of H, P does not exist. But,

as we have seen, this contradicts the assumption that

H is a B, -component or a Brooks tree. This proves the

h

theorem.

19

is a clique Kh’ then Sp is adjacent to every



L, Some partition theorems

We consider the problem of partitioning the vertex
set of a graph so that the subgraphs induced by the
subsets of vertices will satisfy various constraints
on the degree of their vertlces.

Given sets X,Y  V(G), we denote by E(X,Y) the
cet of edges in E(G) with one end in X and the other
end in Y. Let ES(X,Y) denote the set of edges in E(G®)
with one end in X and the other end in Y.

Given a partition XlVX2 of V/(G), we simplify
notation by writing Gi for the subgraph G[Xi] induced
by Xi' where 1=1,2.

Lovéasz [11] proved a variation on the first theorem
below, except that he maximized an expression different
than f,(X,,X,).

Let h, and h

1 2
fl(xl.xz) = IE(Xl,xz)\ + hllxll + hzlle.

be integers, and let

20
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Theorem 4.1 Let G be a graph with maximum degree

A(G) >1, and let h,.h, be nonnegative integers such that
A(G) = hl+h2+1.

If le X2 is a partition of V(G) that maximizes fl’ then

for 1=1,2, X, is nonempty, and

i
A(Gi.) < h,.

Proof: Of X X2, at least one set, say Xl' is

1!
nonempty. Later, we show that X2 is also nonempty,

whence the following argﬁment applies also to Xz. Let
x:eXl. By hypothesis, |

= IE(X,X2)I - 'E(xnxl)l + hl - hzo
We add 2 degg (x) = Z}E(x.xl)\ to each side and get
1
ZdGSGl(X) < 1E(x,X,)1 4 lE(x, X))l & hy - h,

= degG(x) + hy - h,
< (h) + hy + 1) + 0y -hy

Dividing by 2 and observing that the left side is an
integer, we get
degGl(x) < h;.

Since x €X., 1is arbitrary, we have

1
A(Gl) < h < N(G),
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whence, Xl is not V(G). Thus, X, 1s also not empty,

and the theorem follows.

Corollary 4.2 (Lovasz [11]) Let G be a graph with

A(G) = h, and let h.,h

1* 2""’hn be nonnegative integers

satisfying
h = hl+h2+...+hn+n-l.

Then there is a partition V(G) = xlu:x2~'...\an such

that for i1i<n, if Xi is not empty, then

AGLX D < hye
Proof: Let Theorem 4.1, where n=2, be a basis for

induction. Assume inductively that this corollary is

true for n-1, and write

Theorem 4.1 asserts that there is a partition

S 3) -

Xl (V(3) Xl)such that

A(G[xlj) <h

1
A(G-Xl)<h2+ooo+hn+(n-l)-lo

By the induction hypothesis, there is a partition

Xz\/... VXn of V(u)--X1 such that

a(Glx, D < hy,

for 1=-1,2,...,n. This proves the corollary.
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Conjecture: Let G be a graph on p vertices. If

neither G nor Gc i1s edgeless, then there are partitions
Xlux2 and Y1~'Y2 of V(G) such that
AGLX D + AGGLX,T]) + 2(6°[Y, 1) 4 A(G°[Y,]) < p- 3.
If G is regular, then this conjecture follows
easily from Theorem 4.1.
Suppose that the conjecture is true. It is easily
verified that for any grgph G,
X(G) < A(G)+1.
Thus, the 1lnequality of the conjecture implies
X(G[X; 1) + X(6[X, ) + x(G°[¥ D) + X(6°[¥,]) < p+1.
Therefore, for any graph G,
x(G) + x(G%) < pa+1.
Since this inequality 1is the theorem of Nordhaus and

Gaddum [12], the conjecture, if true, would generalize

thelr theoren.

A nontrivial partition xlxzxz of V(G) is a parti-

tion in which both X1 and X2 are nonempty.



For any partition X,v X, of V(G) we write

1 %2
G =G[X1], i-1,2,

and
Py = XY, i=1,2,

i
and define, for ¢ ¢ (0,17,

1cp2 4 2op?
£2(X1:%5) = 1E(X, X0 + 3ep) + $cps.

Theorem 4.3 Let G be a graph with

A(G) = c(p-1)
for ¢ €(0,1] and p>2. For any partition X;vX

such that

(&.1) f, is maximized, and
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of V(G)

(4.2) %_c(pi-;-pg) is minimized, subject to (4.1),

it follows that

(4.3) X, vX, is a nontrivial partition;
and for i=1,2,

(L.4) A(Gy) < el(py -1).

FProof: Define the linear function

(4.5) e(t) = c-t,

where t> 0. Thus,

(L4.6) A(G) = c(p-1) = c(t)(p=-1) + t(p-1).
For any partition lexz of V(G) and any t>0, define

Fo(Xy,X5) = JE(X X010 + %c(t)(pf-rp
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Thus, for Xl and X2 fixed, Ft igs a linear function

of t with F-intercept f2(X1,X2) and with slope
-%(p§4-p§). Moreover, F, is equal to f,.

Therefore, if X, -~ X, satisfies (4.1), then for any

1 2
other partition Ylk’Yz of V(G),

Fo(X]+X5) 2 Fo(yl.xz).

Also, (4.2) assures that if Y,V Y, is another partition
that maximizes fz(xl,xz)i then

i‘t(h:l,"n.c-,. :_' ;C‘:_L‘YZ).

Thus, the only way that we could have
Cif (4.1) and (4.2) hold is if

FO(Xl’XZ) > FO(Yl,YZ)

and if the slope of Ft(xl’XZ) is strictly less than
that of Ft(Yl,Yz), and t is sufficiently large; Thus,
for t>0 sufficiently close to 0, if (4.1) and (4.2)

hold, then X, v X, also maximizes Ft' We shall consider

1 2

t to be small enonugh so that Xl~rX2 also maximizes Ft'

Reversing the indices if necessary, we may suppose

without loss of generality that Xl is nonempty. Let

xexl. We have
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(4.8) 0

IN

Ft(xl'XZ) - Ft(Xl-x,X2+-x)
= IE(X, X1 + 3e(t) (05 +p3)

- |E(X1-X.X2+x)|

- 3e(t)((py - 1?4 (p,+ 1))
= 18(x,X,)1 - {E(x, X))l + c(t)py
- C(t)Pz - C(t)o

We add 2 deg (x) = 2lE(x,X1)l to each side and get
1

2 deg; (x) < deg,(x) + c(t)pl-c(t)pz-C(t)
1l

<(°Uﬂ+t)ﬂd+p2-l)+c(ﬂpl
- c(t)p, - c(t)
= 2e(t)(p; -1) + t(p-1).
We divide by 2 and substitute for c(t) to get
(4.9) deg, (x) £ c(t)(py -1) + 3t(p-1)
1
= c(p; -1) - t(p; -1) + 3t(p-1)
= c(pl-l) + %t(p-—2p14-l).
If Gy =G, then p, = p, whence by (k.9), if x is a vertex

of maximum degree in G, then

deg,(x) = degg, (x)
P 1

< c(p-1) 4 3t(1 - p)

< c(p-1)

= degG(x),
a contradiction. Hence, (4.3) holds, and (4.9) applies
to either set X, or X.. Since (4.9) holds for t=0,

1 2
(4.4) follows.
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Let lex2 be a nontrivial partition that maxi-
mizes fj(Xl,Xz), with j=1 in Theorem 4.1 or with j=2
in Theorem 4.3. If Theorem L.3 applies, assume also
that (4.2) holds. If x; €X; and x,¢€ X, have the
property that

(L"olo) ‘E(lexz)‘ = ‘E(Xl+x2-xl'x2+xl-x2”'
then (qu-xz-xl) V(Xz-yxl-xz) is also a partition
of V(G) such that the above conditions hold. Any pair
X, X, of vertices satisfying condition (4.10) are

called interchangeable. If X, €X, and X, € X, are

interchangeable vertices, then G[Xl4-x2-xl] and
G[X24-x1-x2] satisfy the same conclusions in Theorems
4,1 and 4.3 that apply to G[X,] and G[x,J.

Theorem 4.4 If in Theorem 4.1 or 4.3 Xy €X1 and

X, €X2 are two adjacent vertices such that

(4.11) degGl(xl) + degcz(xz) = AG) -1,
then Xy and X, are interchangeable, and we have

in Theorem L4.1;

hi
deg, (Xi) =
i [c(pi-l)] in Theorem L.3,
and

degG(xi) = A(G).
Ir x3 1s another vertex that is interchangeable with Xq

then x2 and x3 are adjacent in G.
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Proof: Let xlé Xl and x2<§X2 be adjacent vertices

satisfying (4.11), where Xl~'X2 is a partition of V(G)

that maximizes fl(Xl,XZ) in Theorem 4.1 or maximizes

fZ(Xl.Xz) and satisfies (4.2) in Theorem 4.3. We have

(4.12) |E(Xl+x2-x1,X2+xl-x2)l = 1E(xl,x2)(
d (x,) + d (x,)
+ egc;l *17 * 0%8g %2
- 1E(x, X, - x,)] = JE(x,,Xy = %)l
= \E(Xl,Xz)\ + 2degGl(x1) + 2degG2(x2)
- ‘E(xl,V(G) ‘xz)\ - ‘E(xzyv(G) "xl)l
= |E(X1,X2)l + 2(A(G) -1) - (degG(xl) -1)
- (deg,(x,) - 1) (by (4.11)

By the maximality of fj(Xl,Xz) in Theorems 4.1 and 4.3,
\E(xl,xz)\ cannot be less than lb(xl+x2-xl,X2+xl—x2H.
Hence, (4.12) holds with equality. Thus, x; and x, are
interchangeable. Also, since (4.12) holds with equality,

A(G) -1 = degG(Xi) -1 (i=1,2),
whence, ’

deg,(x,) = A(G).

Observe that if (4.11) holds, then deg, (xl) and
1

degG (xz) attain the upper bound specified by Theorem

2
4.1 or 4.3, whichever is applicable. For instance,
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from (4.11) and from (4.4) of Theorem 4.3,

A(G).—l - degGl(xl) + degGZ(.xz)

A(Gl) + AG,)

IA

< c(pl-l) + C(pz-l)

c(p-1) - ¢

I
>
@
i
(¢

< A(G).
Thus, since A(G) is an integer,
for i=1 and 2. In Theorem 4.1, we can more easily
obtain
! —
(4.14) degGi(Xi) = hy (1=1,2).
If, contrary to the conclusion of Theorsm 4.4, X5 is
not adjacent to X3, then in G[XZ*'XI"XBJ’ X, 1s adja-
cent to x; and to h, or [c(pz-l)], respectively, other
vertices in G[X24-x1-x3]. depending upon whether we
consider Theorem 4.1 or Theorem 4.3, respectively,
However, we have

h2 in Theorem 4.1;
A(GLX, + X, - X3]) <

[c(pz—l)] in Theorem 4.3,
since Xy and x2 are interchanseable, and so we have a

contradiction. Thus, x, must be ad jacent to X5
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We shall use the following result in section 9.

Theorem 4.5 Let G be a graph with p>2 and

(4.15) 8(G) = c(p-1)
for some ¢ €[0,1). There is a nontrivial partition

X v 4

(4.16) f.3(xl.x2) =—;;(l—c)(p§+p§) -]E(Gi)‘ - \E(Gg)l

of V(G) which maximizes

and satisfles

(£.17)  8(G,) 2 clp, - 1),
for i=1 and 2. Furthermore, suppose xlé X1 and xze;xz
are adjacent in G% and satisfy

(4.18) deg, (xl) + deng(xz) = 6(G).

1
Then Xy and X, are interchangeable,

(4.19) degG(xl) = degG(xz) = c(p-1),

and the set of vertices in X interchangeable with Xy

3-1
. c
are adjacent in G3-i to x3_i.

c .
satisfies

Proof: By (4.15), G
(4.20)  A(G%) = (L-c)(p-1)
for some ¢ €[0,1). Note that a partition that maximizes
f3(X1.X2) also maximizes
£50X %) + JB(GO)] = [EC(X).%,)) (1 - ) (p} 4 p5)
which is fz(xl,xz) with 1 -c¢c in place of c and E® in
place of E, Hence, by Theor=m 4.3, there is a nontrivial

partition of Xlux2 of V(G) that maximizes f3(Xl,X2)
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such that

(4.21) A(G;’) < (1-0)(p1—l).
by (&4.4), whence (4.17) follows.

Ir xlé X, and X, €X, satisfy (4.18), then -

dech(xl) + dech(xz) = A(GC) _l’
1 2

whence (4.11) of Theorem 4.4 holds for G°. The remain-
ing conclusions of Theorem 4.5 follow directly from

Theorem 4.4 applied to G?.



5. A bound on the chromatic number of a graph.

In this section we combine Theorem 2.1 of Brooks
[5] and Corollary 4.2 of Lovasz [11] to give an upper
bound on the chromatic number of a graph G, in terms
of A(G) and 0(G).

Theorem 5.1 If G is a graph with no complete

subgraphs on r vertices, where r> 4, then
X(G) £ A(G)+1-[(A(G)+1)/r].
Proof: To simplify notation, let
n=[(A(G)+1)/r].
If n=0, then Theorem 5.1 follows. Thus, we can assume
that n> 0,
By Corollary 4.2, there is a partition of V(G) into
n sets xl’XZ"’°'Xn’ such that if X1 is nonempty, then
A(G[Xi]) <r-1 for 1=-1,2,...,n-1,
and such that if Xn is nonempty then
A GLX ]) < A(G) -r(n-1).
Since G contains no complete subgraphs on r vertices,

neither do the subgraphs G[X,], for all i<n. Hence,

by these inequalities and Brooks' Theoremn,

32
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X(G[X,])) < r-1 for 1-1,2,...,n-1,
and
X(G[x, ) < A(G) -r(n-1).
The latter inequality follows because by definition of n,
A(G) -r(n-1) >r-1,
whence Brooks' Theorem may be applied to G[Xn]. Hence,
x(G) < =, x(c[x,])
< (n-1)(r-1) + A(G) - r(n-1)
A(G) + 1 - n,

and the theorem is proved.
We know of no examples with X(G) < A(G) for which

Theorem 5.1 holds with equality.

It has recently come to our attention that 0. V.
Borodin and A. V. Kostochka have independently obtained
Theorem 5.1. Their result appears in a preprint titled

"On an Upper Bound of the Graph's Chromatic Number

Depending on Graph's Degree and Density."



6. The chromatic number, cligue number and

maximum degree of a gravh.

In this section we obtain results concerning the
structure of a graph G having the parameters
A(G) = h, 6(G) = h-r, X(G) = h-ra41,
where h and r are integers. Our main concern is with
h>6 and r=1. The case r—0 is Brooks' Theorem
(Theorem 2.1), when h> 3.

Theorem 6.1 Let r and h be integers, where

0<r<h. Let G be an edge-minimal graph satisfying
(6.1) A(G) < h, o(G) <h-r, X(G)>h-rasl.
For each e € E(G) there is a maximal stable set S, such
that either e lies in all cliques K, . of G-S_, or e
lies in an edge-minimal subgraph H of G - Se satisfying
(6.2) A(H) < h-1, 6(H) <h-r-1, X(H) = h-r.
Proof: Assume G to be an edge-minimal graph with

(6.3) &(G) h.

IN

(6.4) 0(G) < h-r,
The edge-minimality of G implies that for any e ¢ E(G),

(6.6) X(G-e) = h-r~r.

34
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Hence, (6.5) becomes

(6.7) X(G) = h-T41.

By (6.6) and (6.7), for any maximal stable set S < vV(G),

(6.8) X(G-8) = h-r.

By (6.6), for any e € £5(G), there is a maximal
stable set Se such that Se is monochromatic in an
(h-r)-coloring of G-e. Therefore,

(6.9) Xm-e-sd =h-r-1,
and by (6.3) and the maximality of Se»

(6.10) A(G-S_) < h-1,
and by (6.8),

(6.11) x(G-8.) = h-r.

Since (6.11) precludes e(G-Se) > h-r, either

(6.12) 6(G-5.) = h-r,
or

(6.13) e(G-5,) < h-r.

If (6.12) holds, then (6.9) implies that e lies in

all cliques K of G-35,. If (6.13) holds, then by

h-r
(6.10), (6.13), and (6.11), H = G -8, satisfies the
relations (6.2). Also, since the removal of e from
G-Se reduces the chromatic number of G-—Se, by (6.9),
e 1s in an edge-minimal subgraph H of G--'Se that satis-

fies (6.2).
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Lemma 6.2 Suppose that G is a connected graph with
(6.14) A(G) = h, 6(G) = h-r, %{G) = h-r41,

such that every edge lies in a clique Kh If

...r'
(6.15) h > 3r+ 3,

then every two cliques on h-r vertices intersect in

at least h-2r -1 vertices.
Proof: Suppose first that two cliques of G inter-

sect at a vertex v. We claim that these two cliques

must intersect in at least h-2r -1 vertices. Note

that v is adjacent to h-r -1 vertices in each clique.

If these two cliques overlap at v and at most h-2r -3

other vertices, then v is adjacent to at least

2(h-r-1)-(h-2r-3) = hs1

vertices of G, contrary to (6.14). This proves the claim.
Suppose that Cl and CO are cliques on h-i‘ vertices

each, which do not overlap. Since G is connected, there

is a minimum length path vo.vl,...,v in G_, where

n
‘{vo,vl} GE(Cl) and 5'vn-l'vn3€ E(CO). and since C1 and
Co do not overlap, n> 3. We shall find a shorter path
with these properties, contrary to the minimality of n.
For 1-1,2,3, denote by C:l the clique on h-r
vertices containing the edge {vi_l,vi{. By hypothesis,

and since n> 3, such cliques exist. By the claim, C1
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and C, overlap in at least h-2r-1 vertices, as do

2

C3 and C,. Since !V(Cz)l = h-r, the number of vertices

common to Cl' C2’ and C3 is at least

V(G ~ Cl 4 IV(C5n G = IV(C,)!
>2(h-2r-1) - (h-r)
= h-}r-Z
21,

by (6.15). Let v denote a vertex at which C; and C3
overlap. The path vo,v.v3,...,vn violates the mini-
mality of n. This proves the lemma.

We do not assume Brooks' Theorem in the following:

Theorem 6.3 If h> 3, then there is no graph G with

(6.16) A(G) =h, 6(G) =h, %x(G) = h+1,
in which each edge of G lies in a clique Kh'
Proof: Suppose that such a graph exists. Let

C be a clique K By Lemma 6.2, with r=0, each vertex

h'

of G-C lies in a clique K, that intersects C in at

h
least h-1 vertices. Hence, each vertex of G-C 1is
ad jacent to at least h-1 vertices of C. If |V(G-C)| >2,
then there are at least 2(h-1) edges with exactly
one end in C.

However, since each vertex‘of C hasudegree at most

h, and is adjacent to h-1 vertices in C, each vertex

of C is incident with at most one edge having just one
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end in H. Thus, there are at most h edges with just
one end 1n C. This contradiction shows that V(G - C)|
< 1. But since 6(G) = h, this forces %(G) = h, and
hence G does not exist.

Theorem 6.4 If h>6, then there is no graph with

(6.17) A(G) =h, ©(G) =h-1, X(G) =h
in which each edge of G lies in a clique Kh-l’

Proof: Let C be a clique Khrl of G chosen to have
at least as many vertices of degree less than h as any
other clique,

By Lemma 6.2, with r=1, each vertex of G-C lies
in a clique that intersects C in at least h- 3 vertices.
Hence, each vertex of G- C 1s adjacent to at least
h-3 vertices of C. Therefore, there are at least
(h-3)[V(G-C)| edges with exactly one end in C.

Case I: Suppose that each vertex of C has degree
h. By the choice of C, it follows that each vertex of
G has degree h. Hence, each vertex of C is adjacent
to 2 vertices outside of C, and so there are 21V(C)|
= 2(h-~-1) edges with exactly one end in C. Thus,

2(h-1) 2 (h-3){V(G-C)l,

whence,
I(c-c)l < 2B=L 10

h-3=73 "
|

since h>6. If |V(G-C)| = 3, then since each vertex
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of V(G-C) is adjacent to at most two vertices of
V(G -C), each is adjacent to at least h- 2 vertices
of C. This gives at least (h-2)|V(G-C)| edges with
exactly one end in C. Thus,
2(h-1) > (h-2)|V(G-0C)],
whence,
we-c) < 2B=1 <2,

Case II: Suppose that at least two vertices of
C have degree less than h. Hence, the number of edges
with exactly one end in C is at most 2(h-2). Thus,

2(h-2) > (h-3)1V(G-C)i,
whence
V(e-c)l < 2%5%.

Case III: Suppose that exactly one vertex of C
has degree less than h. Hence, the number ofAedges with
exactly one end in C is at most 2(h-1) -1 = 2(h-%).
Thus,

2(h—%) > (h-3)iv(G-C)l,

whence,
v(c-c) < 2B=3 < 3,
g h—3 —_
with equality only if h=6 and each vertex of G-C is
ad jacent to exactly h- 3 = 3 vertices of ' C. 1In this
case, if v1<EV(G-C) is ad jacent to h-3 = 3 vertices

of C, then vy is in the same cliqgue K5 with another



Lo

vertex v, € V(G-C). By the choice of C, one of ViVy
has degree h==6 in G, for otherwise, we would be in
Case II. This vertex is adjacent to at most two other
vertices of V(G -C), and hence to four vertices of C.
But this contradicts the earlier remark that each ver-
tex of G-C 1is adjacent to exactly three vertices in C.

Therefore, in any case,

Iv(G-C)l < 2.

If |V(G-C)] <1, tk;en IV(G)] < h, and so A(G)
< h-1 and 0(G) = h-1 imply %(G) = h-1<h. Thus, we
may assume that |V(G-C)| = 2 and |V(G)] = h+1l. Let
S be a maximum stable set in V(G). If |St > 3, then
X(G) < h. Since 6(G) = h-1, |S] > 2. Suppose,
therefore, that S| = 2. Write S = {sl,szz. If G-8
is not a clique Kh-l' then X(G-S) < h-2, whénce
X(G) < h., On the other hand, suppose that G-3S is a

clique K Since 6(G) = h-1, s, 1s not adjacent

h-1°
to some vertex v, € V(G - S), and S, ls not adjacent to

some point v,e€ V(G- S). Since S is a maximum stable

2
set, v1 # v2. Thus, since

X(G -8 - ivl,vz’s) = W(G-s-ivl.vzg)[ = h-3,
and since isl.vli and isz.vzi are stable sets,
%(G) < h. Therefore, G does not exist, and the proof

of Theorem 6.4 is complete.
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Both Theorem 6.3 and 6.4 are best possible in a
certain sense. | If h=2, then Theorem 6.3 fails for an
odd polygon of at least five vertices. Suppose that
h=5 in Theorem 6.4. We construct a counterexample
G as follows. Let V(G) be a set of bn4 2 vertices,
n>2, and let m map them onto the vertices of a polygon
G' on 2n+ 1 vertices so that exactly two vertices of
V(G) are mapped to each vertex of G'. We define the
edges of G to be the pairs AL such that either

(v -_-n(v2) or n(vl) and n(vz) are adjacent in G',

1)
Theorem 6.5 Let r=0 or 1. If for sone

h > 3r.4+ 3 there is a graph G with

(6.18) A(G) £ h, (G) < h-r, X(G) = h-ra41,
then there is a subgraph H of G, outside 61‘ a maximal
stable set S, which is edge-minimal with respeﬁt to

(6.19) A(H) <h-1, 6(H) £h-r-1, X(H) = h-r,

Proof: Without loss of generality, we may assume
that G 1s edge-minimal with respsct to (6.18). By
Theorem 6.1, with r=0 or 1, each edge e of G either
lies in a clique Kh—r of G - Se’ for some maximal stable
set Se € V(G), or there is a subgraph H of G-Se
satisfying (6.19). By Theorems 6.3 and 6.4, it is

not possible that each edge e €E(G) lies in a clique
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Kh-r' for no suph graph exists. Thus, there is an edge

e contained in a subgraph H of G satisfying (6.19).

Corollary 6.6 1If Brooks' Theorem holds for all

graphs H with A(H) = 3, then Brooks' Theorenm holds
for all graphs.

Proof: Brooks' Theorem (Theorem 2.1) for a(H)
= 3 is a bésis for induction. By Brooks' Theorem for
A(H) = h-1, there is no graph satisfying (6.19).
Thus, by Theorem 6.5 with r =0, there is no graph G
satisfying (6.18), and so Brooks' Theorem holds for
A(G) = h.

Corollary 6.7 If there is an integer n>6 such

that there is no graph H satisfying

(6.20) A(H) =n, 6(H) =n-1, X(H) =n,
then for all h>n, there 1s no graph G satisfying

(6.21) A(G) = h, 6(G) =h-1, X(G) = h.

Proof: We use the nonexistence of a gravh H
satisfying (6.20) as a basis for inductlon. Suppose
there is no graph H satisfying

A(H) = h-1, 8(H) = h-2, ¥(H) = h-1

where h> 7. By Theorem 6.5, with r=1, there 1s no

graph G satisfying (6.21).
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Benedict and Chinn [2] note that for n<?7 there
are graphs H satisfying (6.20). Thus, the induction
suggested by Corollary 6.7 would have to start at
n>8, if at all.

We show that there are infinitely many graphs G
satisfying

(6.22) Ap(G) = 6, 0(G) = 5, X(G) = 6.

We define such graphs reqursively. Let G' be the graph
obtained from K7 by the removal of three edges that
form a triangle in K7. Let Go be either K6 or a graph
that satisfies (6.22). Given Gy let Gi+l be obtained
from G1 and G' by removing from Gi a vertex (but not
its incident edges) and joining these incident edges to
the three vertices of degree four in G' (called vertices
of attachment), so that at most two edges from G, are
assigned to each of the three vertices of degree four
in G'. Suppose, by way of contradiction, that y(Gi+l)
= 5. Since 4 colors are assigned to the 4 vertices of
degree 6 in G', a fifth color must be assigned to each
of the three vertices of attachment of G'. Hence, 1n
a 5-coloring of Gi+l’ the 7 vertices of G' behave like
a single vertex of the fifth color. Therefore,

X(Gi+l) = X(Gi) = 6, a contradiction. Since G,
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satisfies X(Go) = 6, we have ,X(Gi+l) = 6, by induc-
tion. It is clear that the other relations of (6.22)

also’hold for Gi+1'

We give seven nonisomorphic examples of connected
graphs G with

a(G) = 7, 0(G) = 6, Xx(G) = 7.

Define the graph G' to be a clique K8 minus 3 edges
which form a triangle 1n'K8. Thus, G' has 3 vertices
of degree 5 and 5 vertices of degree 7. For any non-
empty subset S of the set of vertices of a clique K7,
construct G by removing each vertex of S (but not the
incident edges) and replacing it with a copy of G'
so that the six edges incident with a removed vertex
are instead made to be incident in pairs with the 3
vertices of degree 5 in the copy of G'. This gives a
graph G having the desired parameters. The number of
vertices of G is thus 7({Si+1l). Benedict and Chinn
obtained the graph with |S] = 1 as an example G having

these parameters, and noted that the method of con-

struction does not generalize to n> 8.
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7. Subgraphs of graphs, II

In [6] we gave a sufficient condition for H to be
a subgraph of G by showing that for any positive integer
d there is a coﬁstant cgq <d such that A(H) <d and
6(G) > cyp imply that H is a subgraph of G. We ob-
tained this from a result on bipartite graphs that is
analogous to Theorem 7.1, and 1is in a certain sense
best possible. In a footnote in [6] we announced having
improved 4 to the value given by Theorem 7.1 below.
Likxe Theorem 7.1, our result in [6] on bipartite graphs
may be obtained using a generalization of the concept
of alternating paths, which is used extensively in
studying matchings. In the special case when A(H) =1,
the proof of Theorem 7.1 reduces to an argument invol-
ving an alternating path of length L,

N. Sauer and J. Spencer [14] have independently
obtained Theorem 7.1. This was announced 1in [13]. Erd8s
and Stone [9] gave a sufficient condition of a different
nature for H to be a subgraph of G. Bol;obés and

Eldridge [3] and Sauer and Spencer [14] have considered

L6
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the problem of giving sufficient conditions, based on
the number of edges of H and Gc, for H to be a subgraph
of G.

After proving the main result of section 7, we give
some special cases, and indicate what would be best
possible. Our main result of this section 1is

Theorem 7.1 If G and H are graphs on p vertices

such that

(7.1) 2 A(G®) A(H) <p-1
then H is a subgraph of G.

Proof: Throughout the proof, the letter w will be
used to denote vertices of H (i.e., w' € V(H)), and the
letters x and v will be used for vertices of G. Glven
a gravh G, suppose that H is an edge-minimal graph that
is not a subgraph of G, but suppose that H and G
satisfy (7.1). By edge-minimality, we can pick any
edge, say e € V(H), fixed throughout the proof, so that
H-e iz a subgraph of G. Let

n: V(H) —>V(G)
be an embedding of H-e into G. Let w,w'! be the ends
of e in H. We shall alter m by transposing m(w) with
another vertex of G so that the resulting embedding
of H-e also maps e to an edge of G. This is a contra-

diction.
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Define |
M(v) = fv" eV(G): Tn t(v),nTH(v")} CE(H-e)}.
A successor of vv is any vertex vle V(G) such that for

each v"e M(v), v, is either equal or adjacent in G to v".

1

Denote by S(v) the set of all successors of v. We say

that v is a predecessor of vl if vl is a successor of V.
Denote by P(vl) the set of all predecessors of vy

Let v=n(w). Note that if v, € S(v)~P(v) and if

1
vy # v, then (v vl)n embeds H-e into G.

We estimate [S(v)l and i P(v)l by deriving upper
bounds for [V(G) - S(v)| and IV(G) - P(v)l. A vertex
x €V(G) is outside S(v) if x is adjacent in G® to a
vertex x' of M(v). For any given x' ¢li(v), there are
A(G®) choices of x adjacent to x' in G¢. Since
degy (w) < A(E) =1, we must have [M(v)l < A(H) -1
choices of x'. Hence, at most A(Gc)(_A(H) - 1) vertices
x are not in S(v). If xgP(v), then there is an x' € M(x)
such that x' is adjacent in G% to v. There are at most
A(Gc) choices of x' adjacent to v in Gc, and one of
them is m(w'), since m does “not embed e into G. Each
x' lies in at most A(H) sets M(x), where x € V(G), with

strict inequality when n-l(x') = w', whence at most

A(G®) A(H) -1 vertices x of V(G) are not in P(v).



k9

Therefore,
IP(v) ~S(v)l > VWG - \V(G) = P(v)] - [V(G) - S(v)|
p - ( A(G®) A(H) -1)
- A(G®)( A(H) -1)
p - 2 A(H) AG®) + AGY) + 1

v

> 24 A(G®),
by (7.1). At most 14+ A(G®) vertices are not adjacent
in G to n{w'). Therefore, there is a vltzP(v)A S(v)
that is adjacent to n(w'f in G. Thus, (v vl)n is an

embedding of H into G. This proves the theorem.

Conjecture If G and H are graphs on p vertices

satisfying
( A(H) +1)(A(G%) +1) < p4+1,
then H is a subgraph of G.

We give examples to show that the conjecture, if
true, would be best possible. Let H be a graph on p
vertices, and let d be an integer such that

p = -2 (mod d+1).
Then H is said to be in class Cl(d) if A(H) = 4 and
if H has gﬁ}%-l components isomorphic to Kd+l; H is
in class Cz(d) if 4 is odd, if H has one component
isomorphic to Kd,d' and if all gﬂf%-Z other components
are isomorphic to Kd+l’ Thus, for any odd d, there 1is
a unique graph 1in Cz(d), and for 4 even, Cz(d) is empty.

VWle alsc denote these classes by f.‘.l and C, (Figures 1,2,3).
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AN A

Figure 1: The graph in Cl(2) with p=10.

X

Figure 2: A graph in 01(3) with p=10,

Figure 3: The graph in 02(3) with p=10.
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For any integers d,d' satisfying
(A+1)(d'+1) = p+ 2,
if HeCp(d)v Cy(d) and if G%e € (d') v Cy(d'), then it
is easily verified that H 1is not a subgraph of G, unless
He C2(d) and G%¢ Cz(d'). Thus, the conjecture, if true,
is best possible.
It is routine to show that if (7.1) of Theorem 7.1
is improved to ]
2 A(H) A(G®) < p,
then either H is a subgraph of G, or one of H or Gc,
say H, is regular of degree 1, and the other graph lies
in Cl(p/Z) or Cz(p/Z). The proof, however, becomes
much longer than the proof of Theorem 7.1.
We have recently been able to show that there is
a function f(p), on the order of pl/j. such that 1if
G and H are graphs on p vertices with A(H)=2 and
A(G®) < % - f(p), then H is a subgraph of G. The
coefficient % is best possible by above examples. A

proof is in section 10. In the special case where H

has [%] components isomorphic to K, and G satisfies

a(6%) < B34,
either H is a subgraph of G, or equality holds and
G¢ ¢ Cl(Efil)LlCZ(inl). This characterizes the ex-

tremal graphs of a theorem of Corradi and Ha jnal [?].

We prove this in section 9.
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There is a more general special case for which
the conjecture has been proved. If
is an integer, then this value of b in the following
theorem of Hajnal and Szemeredi [10] gives the inequality
of the conjecture. The case A(H) =2 is the theorem
of Corradi and Ha jnal.

Theorem 7.2 Let H be a graph with b components

isomorphic to KA(H)+1’ anﬁ with all other components
isomorphic to KA(H)' If
A(G%) < A'Ht)’ -1,

then H is a subgraph of G.

Theorem 7.2 can be readily derived from the special
case with b = 7§%§T%TT - 1. In this case H €Cl.
Ha jnal and Szemeredi gave GC € C1 to show that their
result is best possible. The example GCe C2 is new.

Given a graph H, the conjecture 1is not necessarily
best possible for that particular graph. For instance,
consider the following theorem of Bondy [4]:

Theorem 7.3 If H is a graph consisting of one

polygonal component of girth g<p and of p-g components

K and if G satisfies A&Gc) < $p-1 and also has p

1’
vertices, then either H is a subgraph of G, or g is odd,

p is even and G is isomorphic to K;p 1p*
2Ky 2
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Let n = [12)-'] If G° contains a component isomor-

phic to K and g=p, Or if G® has a component isomor-

n+1

phic to K and g>p-n, then H, of Theorem 7.3, is not

n,n

a subgraph of G. These examples are similar to the

classes Cl and C2 which make Theorem 7.1 best possible

for A(H) =1, and which make the conjecture best possible.
Next, we give a general construction of examples of

graphs G such that a given graph H is not a subgraph of

G. This construction generalizes class C1 given above.
Let r(H) denote the minimum number of vertices

whose removal from H is necessary to lower the chro-

matic number X(H). Clearly,

r(H) < —Y%ET .

Theorem 7.4 Let H be a graph on p vertices. There

is a graph G on p vertices with
c -T H
G

a(e%) - (B ]

such that H is not a subgraph of G.
Proof: Let n = X(H) -1. Partition the p vertices

of a set X into sets xo,xl,....xn, where

Xyt = r(H) - 1,
where Xo is empty if r(H) =1, where
and anl-lxll < 1. Let a graph G be defined on X so

that G is the complete (n+ 1)-partite graph with (n+1)-

partitlon XO’Xl"°"Xn‘ Since
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- -2
and since TE%ET is the average of lxil,'i==0,l,...,n,
we must have [X | > IX,l. Thus, GCEXn] is a clique, and

letting braces denote the least integer function, we have

A(G%) = Ix 1 -1
= {(p - 1X,1)/n} - 1
= [(p - X! + n - 1)/n] -1
= [(p - Ky - 1)/n]
= [(p - o(H)) /(X (H) - 1)],

which is the condition of the theoren.

Suppose that m embeds H into G. Let H' denote the
suberavh of H induced by the preimage of V(G) - X5-
Since H' contains lXOi = r{(H) -1 fewer vertices than H,
by the definition of r,

¥(H') = «x(H).
But for each 1-1,2,...,n, no two vertices of Xi are
ad_ﬁqnentﬂ in G, and so the embedding
Mye: VIH") —V(G) - X,
is a (X (H) -1)-coloring of H', a contradiction. Hence,
m does not exist, and the theorem 1is proved.
A B _-component is defined in section 2.

h
Corollary 7.5 Let H be a graph on p-vertices of

maximum degree A (H) with b>0 Bh-components. Then
there is a graph G with A(G®) = [(p-b)/A(H)].

such that H is a subgraph of G.
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Proof: By Theorem 2.1, due to Brooks, we have

%(H) = A(H)+1, r(H)=b in Theorem 7.4,

Note that Theorem 7.4 and Corollary 7.5 contain,
as special cases, some of the aforementisned examples
showing that certain results are best possible.

Consider Bondy's Theorem. If p and g are odd,
then b=1 and Corollary 7.5 shows Theorem 7.3 to be
best possible. If g is even and equal to p, then r(H) =
ip, and Theorem 7.4 shows that A(G®) <%p is not suffi-
cient to ensure that H is a subgraph of G.

In the case of Hajnal and Szeméredi's Theoren,
Corollary 7.5 ensures that it is best possible for any
value of A(H) and any b>1.

Let H be a graph satisfying the conditions of
Corollary 7.5. We know of no graph on p vertices with

A% < BeR -1,
even when b= 0, such that H is not a subgraph of G.
It would be interesting to know whether such graphs

exist.



8. Subgraphs‘of maximum degree 2: a short proof.

We give in this section an improvement of Theorem
7.1 for the case A(H) =2 that has a short prdof, but
is not best possible. In section 10, we prove a stronger
result, which is best possible in a certain sense,

As in section 7, the graph H will be embedded in
G, and the letters y and w will be used to denote the
vertices of H, while x and v will be used for vertices
of G. In this section, let

M(v) = §v" eV(G): fn Y(v),n (v")} e E(H)3,

TV TR
WIS TE

m: V(H) — V(G)
is a fixed bijection.

In this section we used a slightly different
definition of successors and predecessors. A vertex
x® € V(G) is a successor of x € V(G) if x' is adjacent
in G to every vertex of M(x). (In section 7, we per-
mitted x' to be a successor of x if x' were adjacent

or equal to every vertex of M(x).) The vertex x is a

predecessor of x' if x' is a successor of X.

56
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Theorem 8.1 Let G and H be graphs on p vertices,

with A(H) = 2. 1r

(6.1)  A(c®) <2e:11
then H is g subgraph of G.

Proof: Let H be an edge-minimal graph for wnich
the theoren is false. Then there is a graph G satisfy-
ing (8.1) such that H is not a subgraph of G, but such
that for any edge e €E(H), H-e is a subgraph of G.

First, we show that if any vertex vy € V(H) has
degree 1 in H, then we are done. Let e==§y0.y1§ be
the edge incident with Yy» and let

m: V(H) — v(G)
be an embedding of H-e into G. Since

A(G®) < %P,
n(yl) has at least %? predecessors in G, and (8.1)
guarantees that among them lie successors of n(yl)
(i.e., vertices of G adjacent to n(yo)). Let x be such
a vertex. Then (x ﬁ(yl))n is an embedding of H into G.

Therefore, assume that each vertex of H has degree
either 0 or 2, Thus, all components of H are either
isolated vertices or polygons.

Let the edges of polygons of H be directed so that

each vertex has one incoming edge and one outzoing edge.
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Given a vertex Yo in H, we shall denote by .yl.yz,y3
the next three éuccessive vertices on the directed
path in H starting at Yo On a triangle, yo=y3.
For the mapping

n: V(H) — V(G),
we shall simplify notation by writing n(yi) =x, for
i-0,1,2,3.

By the minimality of H, we may assume that n embeds
all but one edge, say e, lof‘ H into G. Denote the tail
of e by WO. Following the previous convention, the
head of e 1is Wy s and the next two successive vertices
: Wi @re W, and w3. To simplify notation, we
vwrite n(ﬁi) =Vye 1= 0,1,2,3.

Since e is the only unembedded edge of H, xo,xl.
. x2,x3 and Vl’VZ’V3 are paths in G, and Vo and Vl are
not adjacent in G.

Throughout the proof, we consider e, Wy m, and VO
to be fixed. We shall choose Yy S© that the paths
,yo,yl.yz,y3 and WO’Wl’WZ’WB have no edge in common.
Hence, w3 # Yy+¥p» OT y3, and Wy £ y, or y2 (the case
Wo =Yg is excluded by w3 # y3). For any other choice
of Yo €¢V(H), the two paths have no common edze. Thus,
we have p- 5 choices for Yor Each choice determines

X Xl' X5, and x3 since 1 is fixed.
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For any choice of y,, if (v:L Xl)TT or (vl xl)(v2 xz)n
is an embedding, then H is a subgraph of G, and we are
done. Otherwise, if neither is an embedding, then
E(G%) includes some of the following six edges:

(8.2) {vo,xli . ivl.xoi . Qvl.xz} » Wor X3 i,vz,x37,, §v3,x2§ .

We shall estimate the number of values of Yo for
which (v2 xz)n embeds H-e into G. Observe that for
a given y, (which determines xo,xl,xz,x3).

(8.3) If exactly one of the six edges (8.2) is

in E(GC), then it must be {vo.xl’: orivl,xo§

(otherwise, (vl xl)n or (vy xl)(v2 x2)n embeds H

into G), and so (v2 xz)n enbeds H-e into G.

Let n, be the number of values of Yo such that

1
(8.3) holds. This leaves p-5—nl choices of y, such
that at least 2 of the 6 edges (8.2) lie in E(G®).
We count occurrences of edges 1in E(G®) among the 6
edges of (8.2) in two ways, as y, Tuns over p - 5 ver-
tices in H. It is clear that their number is at least
l(nl) + 2(p-5-nl) = 2p-10-n;.
Also, each of at most A(GC) edges incident with V1 is
counted once among the 6 edges (8.2), if 1=0 or 3,

and each is counted twice if 1=1 or 2. Hence, the

number of edge-occurrences 1s at most 6 A(G®).
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Counting two ways, we get.

2p-10 - n, < number of edge occurrences

1
< 6 1(G%).
Hence,

n, > 2p-10- 6 L(G%),

1
and so by (8.1),
n; > A(G%) 4 1.
Thus, there are at least,ZS(Gc)4-l values of y,, and
hence A(G®) 41 values of X,, such that (v2 xz)n embeds
H-e into G.
The number of vertices x such that both vertices

af ﬁ{%fﬂﬂre adim=ent in G to v1 (i.e., the number of

predecessors of vl) is at least

p-24(6%) » BEEZ,
At most (2p-11)/7 of these are not adjacent to v,
and so the number of predecessors of \a1 that are adja-
cent to Vo in G is at least Ei$il. Let x be any one
of these. Among the A&Gc)-+1 values of %, such that
(v2 xz)n embeds H-e into G, choose X, to be adjacent
to x. Then (vl x)(v2 xzin embeds H into G. But this

contradicts the assumption that H is not a subgraph

of G. The proof is complete.



9. Subgraphs with triangular components

In section 7 we gave two classes of graphs, denoted

C.(d) and C,(d), such that if

o
(d+1)(d'"+1) = p+2,

1¢

1f H € C (d')~C,(d'), and if G° € ¢ (d) ~C,(d), then

either H is not a subgraph of G or boﬂqliécz(d') and

G%e C,(d). We conjectured that if
(A(G®)+1)(A(H)+1) < p+1,

then H is a subgraph of G. Thus, these two classes

C. and C, make the conjecture best possible.

1 2
To simplify notation in this section, we shall
say that G is of type 1 or type 2 if p=:3b4-l,'b>-0;
and either G%e¢ ¢y (b) or G%¢ C,(b), respectively. Thus,
when G is of type 1, there is a set S of b-1 vertices
such that G- S is isomorphic to Kb+l,b+l‘ Also, when
G is of type 2, there is a stable set S of b+ 1 vertices
such that G - S has 2 components, both isomorphic to Kb'
and b is odd.
Suppose He Cl(2). If G is of type 1 or type 2,
then clearly H is not a subgraph of G. We shall show

that if H GC1(2), then graphs G of types 1 and 2 are

61
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the only graphs with 8(G) > B—% such that H is not a

subgraph of G.

Theorem 9.1 Let G and H be graphs on p vertices,

and suppose that every component of H is isomorphic to

1'Kp» or K3. Let b= Db(H) denote the number

of triangular domponénts of H, and suppose b>0, If
5(6) 2 [R£2],

and if H is not a subgraph of G, then elther

either K, ,K

(9.1) There is a set S of b-1 vertices of G

such that G-S is a complete bipartite graph; or
(9.2) There is a set S of b4 1 vertices, b odd,
i eSuete-thal © - C has two components, both ilsomorphic

and H has p-1 triangles.

to K
3

b'

Theorem 9.2 Let G and H be graphs on p vertices

and suppose that every component of H is a triangle K3,
except for one vertex K1 if p=3b+1, or one edge K2
if p=3b+ 3. If

5(6) 2 S(p-1),
then H is not a subgraph of G if and only if both

6(G) = £(p-1) = 2b

and G is of type 1 or type 2.

If H is the graph of Figure 1, then Figures 2 and 3,
respectively, are the complements of corresponding graphs

of types 1 and 2 such that H is not a subgraph.
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Lemma 9.3 Let G be a graph with p=3b+ 1 vertices,
for some integer b, and with 8(G) >2b., If for some set
s €v(G), with 'St = b-1, G-S is bipartite, with
bipartition Vl“ V2, then the following conclusions hold:

Every vertex of S is adjacent to every vertex of G

lVll = IVZI;

G-S is a complete bipartite graph.

Thus, G is of type 1. |

Proof: Without loss of generality, assume that

IVllZlVZI. We have

Wi > 2(p-1Sl) = 3(3b4+1-(b-1)) = b+ 1.

ﬂ
Let v1€ Vl' Since VlVV2

is adjacent in G° to every vertex of Vl-vl. But

is a bipartition of G-3S, vy

A(G®) = p-56(G) -1 < b,
and hence we must have SVli - b4+ 1l and 8(G) = 2b. Also,
each v1(-Vl must be adjacent to every vertex of G--V1
(i.e., to every vertex of V2 and every vertex of s).

The conclusions of the lemma follow directly.

Remarks: If G is of type 2, then p = 4 (mod 6),
and G is regular of degree 2b = %(p- 1). Note that
the only graph that is both of type 1 and type 2 1is

the gquadrilateral.



64

Lemma 9.4 Let G be a graph with p= 3b+ 1 vertices,
for some integer b, and with 6(G)2;2b.. If for some set
S € V(G), with IS! = b4+ 1, G-S has two components, then
the following conditions hold:
Every vertex of S is adjacent to every vertex of G- S;
G - S has two components, both isomorphic to Kb.
If, furthermore, b pairwise disjoint triangles do not
embed in G, then

L4 (mod 6);

1]

p
S is a stable set;
G is of type 1 only if G.1is a quadrilateral.
Thus, G is of type 2.
Proof: Let G and S satisfy the hypotheses. Since
p=13b+1 and 5(G) >2b, any vertex is adjacent in G° to
at most b vertices of G. Thus, since [V(G-S)| = 2b
and since G- S has two components, any vertex in the
smaller component is adjacent in G% to at leasé
11v(G-S)l = b vertices in the larger component of G- S.
But these statements force equality: both components
have just b vertices. Also, the first two conclusions
of the lemma follow immediately.
If S is not a stable set or if p # 4 (mod 6), then
either G[S] has an edge, or, since p=3b4+1l, p = 1 (mod 6).
In either case, an embedding of b pairwise disjoint

triangles is easily found. The rest 1s easy.
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Proof of Theorem 9.1 from Theorem 9.2: Assume

without loss of generality that the components of H
consist of b triangles K3, [R—'Z—ZQ] edges K,, and

p-3b- 2[p—:§3-12] vertices K By adding [P_:Z_ZP_] vertices

l.
to H, each adjacent to both ends of a K2’ we can construct
.z graph H' on p+ [L"zlh] vertices, where the components

of H' consist of b+ [p—'z-ﬁj triangles K; and

p-3b- Z[P—%ZQ] (= 0 or 1) vertices K By adding a

1'
stable set of [L"E}E] vertices to G, we construct a
graph G' in which each added vertex is adjacent to

every vertex of G. Thus,

UGt = D4 [——-—“‘2%] - [3})—-5-—1)].
and
8(G') 2 min(p, 8(G) + [2522])

min(p, [p—%—b] + [})_—2_11_3])
min(p, 2 [.LE.P.])
2 [257]

203 (250D

now

> %—(IV(G'H -1).
Thus, by Theorem 9.2, either H' is a subgraph of G', or
G' is a graph of type 1 or type 2. Suppose G' is a
graph of type 2. If G*' £ G, then G' has a vértex of

degree p and [V(G*')l < %p. Hence, G' is not a graph
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of type 2 unless G'=G. Then by Lemma 9.4,
(G| = % (mod 6).
In this case [24539] = 0 vertices were added to G to
get G', whence p-3b =1, and H has b = %(p-—l) triangles,
and we have the second case of Theorem 9.l.
Suppose G' is a graph of type 1. Then H' has
o' = ba [B52R] - [B5R]
triangles. Moreover, \V(Q')\ = 3b' 4+ 1, and there is a
set S' € V(G'), with |s'{ = b' -1, whose removal leaves
a complete bipartite graph G'-S' = Kb'+1,b'+l' We have
5(G') > 2[25P] - 2v.
We claim that V(G') = V(G) vS'. To prove this,
suppose that V(G) v S' does not contain a vertex
v eV(G') -V(G). However, V(G') - V(G) has only [24539]
vertices, and so some vertex w of G lies on the same
side of the bipartition as v. But v is adjacent to all
vertices of G, and in particular to w, and we have a
contradiction, which proves the claim.
Let S = V(G) ~S'. Then, by the claim,
1IS) = 18') - (1v(G") - (V(G)])
= (b4 [B520]-1) - [B525]
= b-1, ‘ h

and G- S is bipartite. This is a conclusion of 9.1.
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The remaining possibility is that H' is a subgraph
of G'. There is an embedding of H' into G' which extends

an embedding of H into G. This proves Theorem 9.1.

Lemma 9.5 Let G be a graph, and X, v X, be a
partition of V(G) of the type described in Theorem h.s,

for which

(9.3)  8(Gy) +6(G,) = 5(G).

Suppose that sets Y3 c Xl, V3 C.Xz exist such that

(9.4) Gy - Vs is a complete bipartite.graph with

nontrivial bipartition Vlv V2;

(9.5) Gl--Y3 is a complete bipartite graph with

noptrivial bipartition YluYZ;
(9.6) If vev,< V, then degGZ(v) = 6(G2);
(9.7) If yeY, ~Y, then degGl(y) = 8(G,).

Then any vertex of Ylk’Yz is adjacent to every vertex
in Vj’ for some j€%1,2%. Suppose further that
(9.8) No vertex of Y, v Y, 1s ad jacent to vertices
in both V, and V2.

1
Then G-(IB‘JVB) is a complete bipartite graph.

Proof: By (9.3), (9.6), and (9.7), the latter
part of Theorem 4.5 may be applied to the vertices of

vV, v V2~’Y1~’Y .
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Suppose that the first conclusion of the lemma
is false for some y éYl*JYZ. Thus, y is not adjacent
in G to a vertex vy of V1 and a vertex v, of V2. By

Theorem 4.5, v, and v, are interchangeable with y, and

1
are thus not adjacent in G. But, by (9.4), vy is adja-
cent to Vo This contradiction proves the first part
of the lemma. |

By (9.8), any vertex y €Y, vY, is adjacent in c°
to every vertex of Vj fof j€l1,2 . By the first part

of the lemma, which was just proved, y 1is adjacent to

every vertex of Vj-j’

2

those, the set of which we denote Yu, which are adjacent

Thus, the vertices of Ylv Y. fall into two classes:

to vertices of Vl but not V2; and those the set of which

we denote YS, which are adjacent to vertices of V2 but

not Vl'

We claim that 3Y4.Y5? = in,YZ?. To see this,
suppose that Yu"vl and Yu"Yz are both nonempty. Then
any vertex VZG V2 is not adjacent to a vertex ylé Yu"Yl,
nor to a vertex yzé'Yuf~Y2. By Theorem 4.5, Yy and yz

are interchangeable with v, and are thus not adjacent.

However, (9.5) implies that ¥y and y, are ad jacent.
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This contradiction shows that either YM"Il or Yuf-Yz
is empty. Similarly, either Y5«~Y1 or X5»~Y2 is empty.
. o o
Since Vl V2 and Yl Y2 are nontrivial, and
YuLJYS = Yl‘JYZ’

the claim must follow.

In either case of this claim, there is a ] ¢ 11,2%
such that (V1~'Yj) V(V2~JY3_j) is a bipartition of
G-(Y3~*V3). and this bipartite graph 1s complete. This

proves Lemma 9.5.

We define for X3 < V(G)
G' = G X! =1,2,
-0l
¥ R
'- = X' .=l'20
P | Jl J
A vertex x of G, Gj or G3 is critical in G, Gj’ Gs, if
1
degG(x) -1< 3(p--l).
1
de -1 < Z=p:-1),
sgj(x) 3(pJ )
or

g 1
de -1 < x(pt-1),
SGE(X) 3(pJ )
respectively.
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Lemma 9.6 Suppose Theorem 9.2 is valld for all
graphs with less than p vertices. Suppose
p=1 (mod 3)

and that X, <~ X, is a partition of V(G) which satisfies

1 2
the conditions of Theorem 4.5 with c==%. For
jz,2'3 <V(G), write
XY = ‘xj - 1z,2"3 | for j=1,2,
and assume that
p3 =1 (mod 3) " for j=1,2,
(9.9) &(G") Z%(p3-l) for j=1,2,

and that py = 0 (mod 3) for j €%l,2} implies that zééxj
and that there exist critical vertices x3,xuj5X3_j

such that GEZ'XB'Xuj is a triangle. Then, if %(pB-—l)

pairwise disjoint triangles cannot be embedded in GJ

¢ ]
1 and Gg

Proof: Since Theorem 9.2 holds for graphs on

for j=1 and j=2, both G are of type 1.

fewer than p vertices, since (9.9) holds, and since
%(p&-—l) triangles cannot be embedded in G3. j=1,2,
it follows that Gi is of type 1 or type 2, and Gé is
of type 1 or type 2. Thus,
) _
bG'. = 3 '."l -_:12,
( J) 3(pJ ) =1,

whence

(9.10)  5(6]) + 6(c}) = Z(p}+py-2)

%(p-—l) - 2.
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Moreover, by Theorem 4.5,

2 2
The left side is an integer and p = 1 (mod 3), whence
2
6(Gl) + 6(G2) > B(p-l).

So that (9.10) also holds, it follows that if z or z',

respectively, is in Xj, for j € $1,2%, then z or z' is

ad jacent in G to every critical vertex of 33. In fact

(9.11)  6(G;) + 8(G,) = %(p-l).

and vertices critical in‘Gs are critical in Gj’ for
j=1,2. Also, since critical vertices of Gl and critical
vertices of G2 are interchangeable if they are adjacent
in Gc. critical vertices of Gi and critical vertices
of Gé are also interchangeable if they are adjacent in
c°. By (4.19) of Theorem 4.5, such vertices are also
critical in G.

Let ¥yy:¥, be any pair of adjacent critical vertices
of Gi. If Gi is of type 2, then every vertex of Gi is

critical in G!, whence, any adjacent pair suffices.

If G' is of type 1, then p! > 4, and there is a set

1 1
< ?
Y3 < X1 with
1, 4
such that G]'_--Y3 is a complete bipartite graph with

bipartition Ylv Y2, where
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Y. = Y] = 2(pt-1) + 1.
1 2 3'%)
Since Ylk'Yz
if yleY

is the set of critical vertices in GJ,

1 and yZG;YZ. then ¥y and y, are ad jacent

critical vertices of G!.

1
Suppose by way of contradiction that Gé is of type
2 and not of type 1. Then every vertex v of G2 is

critical in G,, and hence interchangeable with Yy

2’
(1=1,2) if yy is ad jacent in G% to v.

' s
1 and in G,

(E(y, X3 = degg(y,) -desGi(yi) - E(y, fz02' 8 )0

Since y, 1s critical in G

- 2(p-1)-5(p] - 1) - IE(y,.1z.2'9)

- %(pé;z) - lE(yi,jz.z's)! .
Hence, the number of vertices of Gé ad jacent in G° to
Yy is at least
P, - IE(yi.Xé)l > %(pé—l) ¥ IE(yi, iz,z'$)l -1,
and these vertices are interchangeable with Yy and thus
form a stable set.

We have two cases: when iz.z'f"xl is not enpty,
and when 31z,z'} gXé. In the first case, without loss of
generality, suppose z eXl. In Gl’ z is adjacent to
every critical vertex of G, including yl,yé exi. Hence,
lE(yi,iz,z's)\ > 1. 1In the second case, .by the hypo-
theses of the lemma, p, = 0 (mod 3) and z lies in a
triangle Gl z,x

,xuj, where x, and x), are ad jacent

3 3
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critical vertices of Gl’ Pick yl,y2 so that
iy,.9,3 = 1X5% ), which is possible because G; = G
here. Then lE(yi,fz,z'?)l > 1. Therefore, in either

case there are at least %(pé-—l) critical vertices of

Gé interchangeable with y, (1-1,2).

Since Gé

Gé is not of both type 1 and type 2, it follows that

is of type 2, Py = 4 (mod 6), and since

pé > 10. Hence, at least %(pé-—l) > 3 critical vertices

of Gé

L.,5, this set of %(pé-l) vertices is a stable set.

are interchangeable with y, (1=1,2). By Theorem

But since Gé is of type 2, there is only one maximal
stable set 82 of more than 2 vertices, and S2 has
%(pé-—l) + 1 vertices. Therefore, y, 1s interchangeable
with all but at most one vertex of 82' Since.’Szl > 3,
there is a critical vertex V'GSZ, criticzl in GZ’
interchangeable with both vertices yl,yz critical in Gl.
By Theorem 4.5, Yy and y, are not adjacent, contrary to

the choice of Yy and Yoo Hence, Gé is of type 1, and

the lemma is proved.
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We leave to the reader the proofs of the next
two lemmas.
Lemma 9.7 Let GO be a graph of type 1 on 3bo+-l

vertices. Let SO be the set of bo-l vertices whose

removal leaves G--SO = Kb Any embedding of

O+l . bo+l *
bo-l pairwise disjoint triangles into GO uses all

e . — a)
but four vertices V1'V2'V3'Vu V(Go) bo, and these
four vertices induce a quadrilateral in GO. Further-
more, vl'v2’v3'v4 may be chosen to be any four vertices

of G that induce a quadrilateral in G.

0~50
Lemma 9.8 Let Go be a graph of type 2 on 3b04-l

vertices. Let So be the stable set of bo-}l vertices

consists of two components, each Kb .
0

such that GO-SO

Any embedding of bo-l pairwise disjoint triangles

into GO uses all but four vertices, two in SO,.and one

in each Kb , and these four vertices induce a quadrilateral
0
in G,. Furthermore, for any four vertices of V(GO)

with two in S, ani one in each Kb , there is an embedding

0
0
of bo-l pairwise disjoint triangles into the remaining

3bo- 3 vertices of GO.
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To save work, we assume without proof the follow-

ing result of Corradi and Hajnal [7]s

Theorem 9.9 Let G and H be graphs on p vertices

such that every component of H is a triangle, except

possibly for one component that is either Kl or K2. If
5(a) z 281,
then H is a subgraph of G.

Proof of Theorem 9.2: By Theorem 9.9, it suffices

to consider graphs G for which

5(G) = %(p-l).
Equality implies that

p=1 (mod 3).
Thus, we can assume that H is a graph with b triangles
and one isolated vertex, and that

p=3b+1,

5(6) = S(p-1) = 2b.

By Theorem 4.5 there are disjoint nonempty sets

Xl,X2 such that V(G)/= Xlu X2 and the induced subgraphs

G,, for Gi=G[X1], i=1,2, satisfy

1!
2
(9.12) 8(G,) = 3(p1-1).
where Py = IXil.
Assume inductively that Theorem 9.2 is true for

graphs smaller than G, and suppose that H is not a



76

subgraph of G. Theorem 9.2 is true for p<l, and so
we have a basis for induction. We have'two cases:
either one of the sets Xi has cardinality a multiple
of 3, or neither do. In one subcase (Subcase IIA),
we show that if H is not a subgraph of G, then G is
of type 2. 1In cher subcases, we verify the hypotheses
of Lemma 9.5, and hence there is a subset S = YBUV3
of V(G), with [S| = b-1, such that G- S is a bipartite
graph. Thus, by Lemma 9.3, G is of type 1. We consider
each case below.

Case I: Suppose that
0 (mod 3)

Py
and

1 (mod 3).

[t

P2
Since 6(G;) is an integer and py) = 0 (mod 3), (9.12) gives
2 2 2
and Theorem 9.9 implies that pl/B triangles can be

embedded 1in Gl' Write

b

1
1 =30
and
1
(9-13) b2 = 3(p2"'l)s
and note that
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and that the'@tzl.triangles embedded in G1 use each
vertex of Gl' Since b triangles are assumed to not
embed in G, it follows that b2 triangles do not embed

in G2. By the induction hypothesis, either G2 is of

type 1, and there is a set V3 < X2 with

(9.14) Vv, =1

3 -1

2
such that

Gy-Vq = K52+1,b2+‘1'

or G2 is of type 2 and there is a stable set

(9.15) S, €X

2 2
such that G2-82 has two components, each a clique
on b2 vertices.
If G2 is of type 2, each vertex v<€X2 has degree

2
and so (9.6) holds. If this alternative applies, write

(9.16) Vo = 55, Vy = Gy -85,

is of type 1, let

If G2

(9.17) V, vV, denote the bipartition of G2-V3.

Then
and (9.12) and (9.13) give
6(62) 2 2b,,

which allows us to apply Lemma 9.3. Also, by Lemma 9.3,
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each vertex of Vj (3=1,2) is adjacent to every vertex
of V3-j and to every vertex of V3, and if v€5V1\JV2,

2
degGZ(v) = 2b, = §(p2-1)

whence (9.6) holds.

It follows in either alternative (either G, of
type 1 or type 2) that there must be at least

2 2
. 2

vertices in Xl ad jacent to a given vertex v €Vl~lV2.

Denote by N(vl.vz) the vertices of X1 that are
ad jacent to both vy eVl and vze V2. We have

2 1
(9.18) |N(vl,v2)( 2-2(j3p1)"pl = 5P = by.

Since G, is of type 1 or type 2, b2 disjoint

2
triangles do not embed in G2' By Lemmas 9.7 and 9.8,
there is an embedding of b2-1 pairwise disjoint triangles

into G. such that the four remaining vertices induce

2
a quadrilateral in G2? with two of its vertices in Vl

' ]
and the other two in V2. Let {vl,vzi and{vl,vzf be
disjoint edges of this quadrilateral, where vl,vi €V1,

]
and v2,v2 GVZ.
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In the two subcases below, we establish that G2
is of type 1, énd that the hypotheses of Lemma 9.5
apply to G, and G,. We have already established (9.4)
and (9.6), and it remains to establish (9.3), (9.5),
and (9.7). After the subcases, we prove (9.8).

Subcase IA: Suppose vl,vie Vl are distinect and

] ] '
v2,v2€ V2 are distinct. Suppose that N(vl,vz), N(vl,vz)
possess a transversal 1y,y'l in Xl; i.e., distinct
y.y' e X, such that
3 J -8 ]
y € N(vy,vy), ¥y’ € N(vy,v3)

Since

N

G(Gl) > 3Py
we have

2
' £ _
6(G1-ty,y1)> 3pl 2

= %(pl - §y,y'i - 1).
Since b pairwise disjoint triangles do not embed in G,
and since (b2-1)4-2 triangles can be embedded in
G[Xz‘aiy,y';]. we cannot embed
b - (b,+1) = b -1

triangles in Gl-{y,y'i. By the induction hypotheses,
G, - fy,y'7 1is a graph of type 1 or of type 2, and

by Lemma 9.6 with fy,y's = {z,z'}, and with fvl,vz} =
ixj,xul, both Gl-fy.y'! and G2 are of type 1. There-

fore, there is a set Yé of bl-2 vertices such that
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Gl--Y3 is bipartite, where
.1 Y, = YLoty,y'i.
(9.19) 3 3.y
Let Yl"Yz be the bipartition of Gl"YB' By definition,
1

and by Lemma 9.3, each vertex yj of Yj (j=1,2) is

ad jacent to every vertex of YB-j\'Yé and has degree

2

5P - 2 in Gy - fy.y't. Thus, (9.5) holds. Since

degGl(yj) Z 6(Gl) = %pl’

each vertex of Yj is also adjacent to y and y', and
hence has degree 6(Gl) in Gl’ whence we have (9.7).
Therefore,

5(6,) +6(G,) = Sp) + 5(py-1)

2(p -
= 8(G),
which is (9.3). We have thus proved (9.3) and (9.4)
through (9.7) of Lemma 9.5. This completes Subcase IA.

Subcase TR: Suppose that there is no pair of

< . ] ’ -~
disjoint edges Iv,,Vv,3, 1v],vy} in G2[Vl V2] such that

N(vl,vz), N(v',vé) possess a transversal.

Since p; >0, (9.18) implies that b]_Zl and that
’ ' ' ~.
N(\l,vz) and N(vl.vz) are nonempty. Sinee N(vl,vz),
N(vi,vé) possess no transversal, we have y exl such that

N(vl,vz) = ¥ = N(vi,vé).
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Hence, X, is not adjacent to itself in Gl’ nor to

1 _
1 1
g(p-—l) =§(p2-l) 4+ 1

vertices in X2, which, by Theorem 4.5, must be a stable

set. Since G, is of type 2, there is only one stable

2
set, namely SZ’ by (9.15), of
1
by+ 1l = -3'(p2-l) + 1
vertices, unless b24-l = 2. If b2==1, then pzzlh and
G2 is a quadrilateral, which is also of type 1. If

b, > 2, each vertex of Xl is interchangeable with any

2
vertex of 82’ and since they are interchangeable,
Theorem 4.5 implies that Xl is stable. This contra-
dicts the fact that Gl is a triangle. Hence, G2 is of

type 1.

Finally, we must show that (9.8) of Lemma 9.5
applies in either subcase. Let y, N(vl,vz), and N(v',vé)
be as in the subcases above. Suppose (9.8) is false.

There exists a vertex y"e€ Ylv Y2 that forms a
triangle with vertices of Vl~»V2. Then the first part
of Lemma 9.4 implies that y" is adjacent to all vertices
of Vj and to some of the vertices of V3-j’ for j=1 or 2.

Choose
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so that y" 1is ad jacent to a vertex v3‘__'j of V3-j -V.
Without loss of generality, suppose
VeV, o
3-1
Then, v3-j' Vj and y form a triangle, and y" forms a
triangle with v:j and v%-j’ Thus, there are two disjoint
triangles, which together with the b2- 1 triangles that
can be embedded 1n Gn - V., ViV ,v! .}, and tne
R TSI R
b, - 1 triangles that can be embedded 1in G1 -fy",y}
constitute an embedding of
2+b2—1+b1-1 = Db
triangles in G. We have contradicted the nonembedda-
bility assumption, and hence (9.8) 1is true. Thus,
all of the hypotheses of Lemma 9.5 hold. We conclude
from Lemma 9.5 that G - (YBVVB) is a bipartite graph.
By (9.14), (9.19), (9.20), we have
ty , vV = b-1,
3 3‘
and so by Lemma 9.3, G is of type 1. This completes

Case I.
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Case II: Suppose that
Py =p, =2 (mod 3).

Since 6(Gi) is an integer, (9.12) implies

2 1
(9.22) 8(G,) 2 3P3- 3

for i-1,2. Without loss of generality, assume

Write
L 2 1 2
Pp=3PL-3 P2=3P2"%
and note that bl and b2 ére integers such that

If we form a graph Gi+-z, adding to Gi (i=1,2)
a new vertex z adjacent to every vertex of Gi’ then
by (9.22),
2
(G, +2) = 3mi+zh

and by Theorem 9.9, b, +1 pairwise disjoint triangles

i
can be embedded in Gi+-z. Therefore, bi pairwise

disjoint triangles and an edge disjoint from the b1
triangles, which we shall call the free edge, can be

embedded in Gi’ We shall attempt to use the vertices

of the two free edges to form an extra triangle, disjoint

from the b, triangles in G, and the b

1 1 2
thus constituting bl*'bz*'l = b pailrwise ‘disjoint

triangles in GZ’

triangles in G. By assuming that b pailrwise disjoint
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triangles do not embed in G, we shall determine the
structure of G in the attempt to find such an embedding.

We show in the two subcases below'that either G 1s

of type 2, or there is a vertex XB GX2 such that the

free edge in G, together with x. form a triangle in G.
D

1
It may be necessary to alter the embedding of bl triangles

and the free edge into Gl in order to accomplish this.

Let x be the ends of the free edge in Gl'

1°%2
Without loss of generality, choose the free edge from

among all possible free edges so _that

deg, (xl) + degGl(xz)

1

is minimized., If Xy and X, are ad jacent in G to a

vertex x3 GXQ, then X9 Xpo x3 is the desired triangle.

Otherwise, Xy and X, are ad jacent to no common vertex

in X2. Then

(9.23) degGl(xl) + degGl(xz) > 28(G) - p,

L
DS R
=Pt 3 3°
Also, without loss of generality, assume that

degGl(xl) > degGl(xz).
These lnequalities imply

(9.24) ZdegGl(xl) > degGl(xl) + degcl(xz)

ZP1+%’P""}§'-
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We define
m: V(H;) —V(G;)
to be an embedding of bl trianzles K3 and one edge-compo-

nent K2, constituting Hl’ into G1 such that the edge-

component K2 is mapped to the free edge X1 Xp that

minimizes deg, (xl) + deg; (xz). We shall alter m if
1

1
necessary, and then either we shall extend m to an

embedding of H into G, where H consists of b triangular
components and one isolated vertex, or we shall show
(Subcase IIA) that G is of type 2 or (following the
subcases) that G is of type 1.

Define

M(x) = {x'€X n-l(x) and ﬂ-l(x') are adjacent

1:
in Hlﬁ.

For 1=1,2, and x€V(G), define

Ni(X) = fx'€X x and x' are adjacent in G3.

i:

We say that x € X, 1s a successor of xlejxl if each

1
vertex of M(x) is adjacent in G, to x. Denote the set

of successors of X4 by S(xl). We say that xle.Xl is

a predecessor of X le if x is a successor of xl. Denote
the set of predecessors of x by P(x).
Recall from section 1 that if xl’xﬁ-exl are equal,

then (x xur is the identity permutation on X,, but 1if

1
3 L
Xy.X,, are distinct, then (xl xu) = (xl xu).
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Subcase IIA: Suppose that

degsl(xz) < %(p- 1).

First, we eliminate the possibility of strict inequality.
If the inequality above is strict, then

lE(xz,Xz)l - degG(xz) - degGl(xz)

> %(p-l) - %(p-l)

=§<p-1).

Since Xy is not adjacent to at most %(p-l) vertices

of G other than itself, x, is adjacent to one of the

1l
more than %(p— 1) vertices x3 of X2 incident witn an
edge of E(xz.xz). Hence, G[xl,xz.x33 is a triangle on
the free edge in G1 and a vertex of Gz.
Henceforth in this subcase, we shall suppose
deg, (x,) = -;—(p—l)..

1
By (9023)1

wiE

1 L

degGl(xl) + 3(p—l) 2Py + 3P -
Hence,

deg. (xl)fz p, -1,

1l

and so Xy must be adjacent to each vertex of Gl'
Therefore, P(xl) = G, - X,. Since S(xl) =Ni(x2), we
conclude that for any xueNl(xz). (xl xu)'n is an embedding

of the b, triangles and free edge into G. Note that
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the embedding (xl xu)HTmakes ixu.xzf the free edge.
By the minimality of degGl(xl) + degGl(xz),
deg, (xu) + degg (xz).g deg (xl) + degg, (xz),
1 1 1 1
whence,

degc_l(xu) = py - 1.
Since x) may be any of the %(p-—l) vertices of Nl(xz),
we know that the vertices of Xl-Nl(xz) must be adjacent
to each vertex of Nl(xz), a set of %(p-l) vertices
ad jacent to all of Gl. Hence,

1
Define the sets
T, = Nl(xz).
Sl = Xl-Tl,
82 = XZ'TZ'

We have already shown that G[Tl] is a complete graph,

and each vertex of S1 is adjacent to every vertex of Tl’
— €

If there is an thTl = S(xl) and a vertex X3 X, such

that G[xz,x3,x4] is a triangle in G, then we have accom-

plished the goal of this subcase, since (x1 xu)HTis an

embedding of b, triangles and a disjoint edge mapped to

1
ixz.xuj, which is the edge forming the triangle with x3.
Otherwlise, no XHG:Tl forms a triangle with X, and any

vertex in X2. Hence, no theTl is adjacent to vertices
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of T Now,

e
IT, | = degG(x ) - degG (x ) > —(p 1),

and hence, any XHC'Tl' having degree at least —(p 1)

in G, must be adjacent to every vertex of 81VI&_82 = X

A similar argument shows that any vertex of T2, not

being adjacent to any vertex of T,, a set of %(p-—l)

vertices, 1s adjacent to any vertex of Slh’TZV 32

except itself. Note that this implies that G[T,] is,

like G[le, a complete graph on %(p-l) vertices.

Also, note that any vertex of 31\'52 is adjacent to

every vertex of TlvT2 in G.

Hence, Sle2 is a set of

IV(G) - (T v T,)| =P - -§-(p-1)
- %‘(p—l) + 1
= b4+ 1

vertices whose removal from G leaves two components
G[Ti], 1-1,2, eaeh a complete graph on %(p-l) =D
vertices.

By Lemma 9.4, €ither b pairwise disjoint triangles
embed in G, or G is of type 2. The first possibility
is contrary to hypothesis. The other possibility 1is
a desired conclusion of Theorem 9.1. Hence, we can
assume that there is a free edge in Gi, which together

with some x exz. forms a triangle in G.

3
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Subcase IIB: Suppose that

(9.25)  desy (x,) > 3(p-1).
1
Let x3 be a vertex of X2 that is adjacent in G to Xoe
Since Py < Pos

deg;(x,) = %(p-l)

2
> ‘3‘(2p1 -1)

wito

1
=p1+ §p1 -
> -

Py 1,
and so x3 exists. The successors S(xl) of X, in Gl
are the vertices of G1 ad jacent to Xse We see that
Sl(xl) = Nl(xz). We have

15(x,) ~N (x)| 2 degg (x,) + desg(x;)

1
- (p,-1) - IS(xl)VNl(XB)I
> degcl(xz) + %(p—l) - (p,-1) - py
= degGl(xz) - %(p- 1)
> 0,
by (9.25). Hence, there is a vertex x465X1 that forms
a triangle with X, and x3 and is a successor of Xqe
If xl‘ES(xu). then the embedding (xl xu)ﬂ maps
the free edge in Gl to {xz,xui, which forms with x3 eXz
a triangle in G as desired. Otherwise,

(9'26) xl ¢ S(Xu).
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We shall find a vertex x, €X, with x5€ S(xu) fP(Xl).
whence (x:L xu x5)nis the desired embedding of bl triangles
and one edge into Gl'

In the image of the triangle embedded into G1
having vertex xu are two other vertices, which we call
x6.x7. The successors of Xy, are those vertices in Gl
ad jacent to both x, and X Hence, xl,x6,x7¢8(xu). and

(9.27) Is(xy)l = degGl(xé) + degGl(x7) - Py

The predecessors P(xl) of x, in G, are those ver-
tices v eXl such that Xy is adjacent to all vertices

. c
of M(v). Now, Xy is adjacent in GJ to pl—degGl(xl) -1
vertices v' € X.. Any such v' lies in exactly two sets

1

M(v), v€X1. Thus, X3 Z S(v) for at most

2p1 - 2deg, (xl) -2

1
vertices v of Xl -M(xl) = G- Xoe Since the remaining

vertices of Gl- x, are in P(xl), we have x, & P(xl), and

(9.28) 1P(x )l 2 1X) - x,0 - (2p, - 2 desg, (xl)-z)

2 1
= 2deg, (xl) - Py + 1

1
!
> - -

by (9.24).
Suppose first that X), is not adjacent to Xy Then
X0 Xgs Xy £ P(x;y), |
and we combine (9.27), (9.28), (9.22), and 2p1_<_p to get
X0 X0 Xge Xy & S(x;,) ~Plx;);
o x6,x7¢8(x4)VP(xl).
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and
(9.29)  15(x,) ~P(x)} 2 1SCx )l + 1P(xp)] = Xy - 1xg, X0

> degGl(Xé) + degGl(x7) - pl

1
- - 2

R, 2
1)"2p1+3+3

2 1

v
N
o
(5]

v

- 29 + 543

> 1,
Suppose, otherwise, that X), is ad jacent to Xg. Then
G[xl'XZ'xhj is a triangle, and fxg,X,3 1is a free edge.
Thus, by choice of ¥x,,x,} and (9.23),
(9.30) degGl(xs) + degg, (x7) > deg; (x;) + deg, (x,)

1 1 1

Zpl+§.-%.

We combine (9.27), (9.28), (9.30) and
P, + Py =P
to obtain

(9.31) 1S(x,) ~P(x)l 2 1S(x,)l 4+ 1P(x))l = py

A%

degcl(xé) + degGl(x7) - P

*%‘%‘pl
2o+ f-3-2m 453
R IR
>5p - 5m-3
- Epy-py) + (5P, -3).
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Note that both of the terms in the last line of

(9.31) are nonnggative if p22_5, and if p2>5, then
the last line is positive, If p2_<_5. then plgp2 and
p; = 2 (mod 3) imply one of the following three cases:

P, = Py = 5;

P, = 5, Py = 2
or

P, = P} = 2.
If p, = Py = 5, then (9.23) gives

degGl(xl) + degGl(xz) > 7,

whence degGl(xl) > degGl(xz) implies that x; 1is adjacent
to every vertex of Gl except itself, whence XLLGP(XI)'
in violation of (9.26). If p2=5. pl=2, then the last
line of (9.31) is 1, which is as desired. If pl=p2=2,
then p = 4 and 6(G) Z%(p-l) imply G 1s K,, K, -e (e an
edge), or a quadrilateral, all of which satisfy the
theorem. Hence, under our hypotheses, the last line
of (9.31) and the last line of (9.29) may be assumed to
be positive,

Therefore, whether or not X, and x, are ad jacent,
there is a vertex x5 £ Xy OT Xy, such that

X € S(XLL) f*P(xl),

and so we have a closed alternating chain in Gl represented
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by the permutation

a = (% x XS).
Hence, am is an embedding of the bl triangles and one
edge into G,. The free edge 1is determined by am to be
ixz,xuﬁ, since Xy is permuted to X), and since X, £ x5
guarantees that'x2 is fixed. Thus, the free edge is

part of a triangle G[xz,x ,xuq, as desired. This

3

concludes Subcase 1IB.

To complete Case II and the proof of the theoren,
we verify that all the hypotheses, and hence the final
conclusion, of Lemma 9.5 apply to G1 and G2, and then
we show that G is of type 1.

Since we have assumed that

b="Db +1+Db,
triangles do not embed in G, and since bl 4+ 1 triangles
embed in Gy 4 X3 = G[qu-x3], we know that we cannot

embed b, triangles in G2-x3. Now,

2
lV(Gz) - XB‘ = 3b2 + 10
and by (9.22),
8(G, - x5) 2 6(Gy) - 1
2 1
2 5p2 - ’5 -1
2
= 3(“(2—)(3[ - l)
= 2b
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Since
6(G) = 2b = 2bl+-24-2b2.
and since

deg, (vj) = 20,41 (3j=1,2),

each v (j=1,2) is adjacent to at least 2b) 4+ 1 vertices

of Gl' Hence, there are at least

[E(v X0+ JE(v,, X)) - py
> 2(2bp# 1) - (3b; +2)

= bl

> 1
choices yg € X, such that G[vl'VZ’y3] is a triangle.
Therefore, as we‘already remarked, we may apply Lemma 9.6

and G are of type 1l.

and conclude that both Gl--y3 > 3

Next, we establish the hypotheses of Lemma 9.5.

-X

Since Gl--y3 and G2--v3 are of type 1, where

V., = X,
3 3
and since they have 3b14.l, 3b24.1 vertices, respectively,

there are sets Yé SIXl--y3 and Vé =4 X2--v3 with

lYéf = bl-l,

Iv%t = b, -1,
such that Gl-y3-Yé and G2-v3-Vé are complete bipar-
tite graphs Yl~/Y2 and V1~'V2, respectively. Define

Y3 = Yé + Y3

V3 = Vé + v3.
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Therefore, by the induction hypothesis, Gz--x3 is

of type 1 or type 2. Hence, .
2 2 b
o - =73 - = 3 -
(G, x3) = 3(p2 2) = P23
whence, by (9.22), X5 is adjacent to every vertex of

2 b .
G, - X, having degree Py - 3 = 6(G2-x3) in G2-x3.

2 3

By Lemmas 9.7 and 9.8, we know that b2-1 triangles
embed in GZ-XB, and that such an embedding uses all
but 4 vertices of G2-x3. Moreover, these L vertices
all have degree 6(G2-x3f in G2-x3. and they induce a
gquadrilateral. Now, x3 is adjacent to all four of these
vertices, and hence forms a triangle with 2 of them.
Let vy and Vs denote the other 2 vertices on this
quadrilateral. Note that vy and vy are adjacent. We
shall show that there are b, choices of a vertex y365X1
such that G[vl,vz,yBJ is a triangle. If b, disjoint
triangles can be embedded in Gl-yB. then, counting
the triangle containing X3 the triangle G[vl,vz,yBJ,
and the b2-1 triang}es of G2-x3, we have b pairwise
disjoint triangles in G, contrary to assumption. Hence,

b, triangles do not embed in Gl-y3. For this to happen,

1

b, > 1.

1
Thus, by (9.22), we may apply Lemma 9.6, with

{ZOZ'g = fx31y3.§v

and conclude that both Gl--y3 and G2--x3 are of type 1.



97

Thus, (9.4) and (9.5) of Lemma 9.5 hold, and also
(9.32) \YB\'VB\-_—. b, + b, = b-l.'
Since Gl—y3 is of type 1, if erlv Yz. then

2
1“3

2, _1

371 3

Therefore, for any y €Y1~’ YZ’

Now, 6(Gl) > and hence y is adjacent to y3€Xl.

2
degGl(y) = 3(p1—2) 4+ 1 = 6(Gl),
and (9.7) of Lemma 9.5 is established. Similarly,
since Gz-v3 is of type 1, (9.6) may be established,

and also for any v € Vlv 'V'2.

degy (v) = 8(G,).

2
By (9.22),
2 L2 1
8(Gy) + 8(Gy) 2 §py - 5+ 5Py - 3
2
= 3(p—l)
= 8(G),

and (9.3) is established. Thus, having proved (9.3)
through (9.7) of Lemma 9.5, we conclude from Lemma 9.5
that any vertex y C—Ylv Y2 is adjacent to every vertex

in Vj for some j¢ {1,2%.
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Suppose by way of contradiction that some y<sYl~'Y2
is adjacent in G to vertices v, ¢ Vl and v2€?V2 (1.e.,
suppose that (9.8) is false). Thus, th,vl,vzj is a
triangle. By Lemma 9.7, for any vertices v5§'V1--v1
and vuelvz-vz, there is an embedding of b2-1 triangles
into G2 - {vl,vz,VB.vu,vsi, since G2--v3 is of type 1.
Note that G[vB.‘vu,VE] is also a triangle. We conclude
from Lemma 9.7 that for any vertices yle”Yl. y2<EY2.
there is an embedding of bl-l pairwise disjoint tri-
angles into Gl - fy,y1,y2,y33, since Gl--y3 is of type 1.
Including the b2-l triangles of G2 - fvl,vz,v3,v4,v5§
and the 3 triangles G[yl,yz,yBJ, G[y,vl,vzj. and
G[vB,vu,vsj, we have

(bl-l) + (bz-l) +3=0"0

pairwise disjoint triangles embedded in G, contrary to
assumption. Hence, (9.8) holds, and by Lemma 9.5,
G - (YB\JVB) is a complete bipartite graph. By (9.32)
and Lemma 9.3, G is of type 1. This completes the

proof of Theorem 9.2.



10. Subgravhs of graphs, IIT

We give one of our main results in this section.

Theorem 10.1 Let G and H be graphs on p vertices.

If A(H) <2 and if
(10.1) A(G®) < % - max(k, %pl/B).
where k = 9, then H is a subgraph of G.
Proof: The entire chapter is devoted to the proof
of this Theorem. First, we 1ntr§duce notation.
Recall that for a bijection
n: V(H) —V(G),
if veV(G), then
M(v) = fx: n-l(x) and n"l(v) are adjacent in HjY.

We shall use the notation

n
I'I(vl,v2,ooo’vn) = Hlbi(vi)'
and

M(a) = Un(v),

VEA.
where the latter unicon is over the vertices v €A, where

A S V(G).

Successors and predecessors are defined as in
section 7, except that we do not permit vertices of
M(v) to be successors or predecessors of v. Thus, x ¢ V(G)

is a successor of ve V(G) if x is adjacent in G to each

99
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vértex of M(v). The set of successors of v is denoted
S(v). Also, Vv is a predecessor of x whenever X is a suc-
cessor of v. The set of predecessors of x is denoted P(x).

Suppose that H is an edge-minimal graph for which
the theorem is false. If yce V(H) is a vertex of degree 1,
then let e ¢ E(H) be the incident edge. Otherwise, all
vertices of H have degree either 0 or 2. If this is the
case, let y € V(H) be a vertex of degree 2, and let
e ¢ E(H) be an edge incident with y. By the edge-mini-
mality of H, there is, in either case, an embedding

m: V(H) — V(G)

of H-e into G. Let m(y) be denoted by x. The bijec-

tion 1 and the vertex x are considered fixed throughout

the proof. At a relatively early stage in the proofb
(prop. 10.5), we shall dispose of the case in which H
has a vertex of degree 1.

Henceforth, all vertices denoted in this proof by
a letter are vertices of G.

We define an alternating chain fron xo to v to be

any finite sequence of at least 2 distinct vertices

XgoXqseoosXp of V(G), with X =V, such that

(10.2) xiés(xi_l) for i-_-l,m2‘,...,m;
(10.3) If xizzxj and 1< j, then either Xy=Xg 9=
...:Xj, or both xo=xl=...=xi and xj=...=xm=xo;

and (10.4) xiﬁMt%) for 0<i< j<m.



101

Note that (10.2) is equivalent to xi_leiP(xi), and (10.4)
is equivalent to X, & M(xi). If Xy=V in an alternating

chain from x. to v, we say that the chain 1ls closed.

0
The proof of Theorem 10.1 will rest upon the observation
that for a closed alternating chain xo.xl,...,xm, with
X=Xy= X, (xO X) een xm_l)n is an embedding of H into G.
Define, for each integer t>1, the set Dt(x) to be
the set of all vertices z such that for any t-1 ver-
tices wl,wz.....wt_IGEV(G)-M(x.z). there is an alter-
natihg chain from x to z containing no vertex of
M(wl""'wt-1)° Define Do(x)==V(G). Thus, we‘have
(10.5) Dy(x) 2D (x)2D,(x)2 ... 2D (x)2 ... 2s(x).
We first prove 15 propositions. Then we break the
proof into six cases, and use the propositions and two
key lemmas about alternating chains to show that in each
case there is a permutation a: V(G) —>V(G) such that
arn embeds H into G.
Recall that in section 1 we defined, for XysXps e

i
the symbol (x1 Xp ooe xnr to be the permutation obtained

e = ' - - -
ces Xy X, where x __xj and 1< J imply Xi"xi+l"°""xj’

by suppressing multivle successive occurrences of the
same member of X in X)0Xpseees Xy e Thus, if Vor Vi Vs eV(G)
are distinct and if v2==v3, then

(vO vy Vs, vBr = (vO vy v2).
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Prop. 10.2 The number |P(v)| of predecessors of

a vertex ve V(G) is at least
% + max(2k,3pl/3) - 2.
Proof: A vertex v' is not a predecessor of v if
there is a vertex u€ V(G), either equal or adjacent
in G% to v, such that v'é€ M(u). Since M(u)} < 2,
(10.1) implies that there are at most
%? - max(2k,3pl/3) + 2
non-predecessors of V. Prop. 10.2 follows.
Prop. 10.3 The number [S(v)| of successors of a

vertex v is at least

g + max(2k,3pl/3) - 2.

Proof: The non-successors of v are the vertices
which are either equal or adjacent in G® to a vertex
of M(v). For each uéeM(v), the number of vertices
either equal or not adjacent to u is at most
13)- - max(k, %pl/B) 4+ 1. Since |M(v)l < 2, there are at
most %? - max(Zk,Bpl/B) 4+ 2 non-successors of V.

Prop. 10.3 follows.

Prop. 10.4 If zeD.(x) and t2>1, then z&P(x) + x.

Proof: If Prop. 10.4 is false, then there is a
closed alternating chain x::xo,xl.....z,x, and so
(xO X] eee z)'m embeds H into G. This is the conclusion

of Theorem 10.1, which we have assumed to be false.
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Prop. 10.5 Every vertex of H has degree either

0 or 2. In particular, \M(x)] = 2, and-if |M(v)l =0
for some v€ V(G), then v eéP(x).

Proof: If |M(x)} = 1, then let M(x)=x'. The
successors of x are the vertices adjacent in G to x'.
Thus, by (10.1), iS(x)l > %f, and since, by Prop. 10.2,
there are more than % predecessors of x, there 1is a
vertex x, € S(x)~ P(x). Then (x xl)n embeds H into G,
contrary to the assumption that H is a graph for which
the theorem is false. Hence, I[M(x)i is not 1, and by
the original choice of x, every vertex of H has degree
0 or 2. The final statement of the proposition follows
because, by the definition of successors, if M(v)l = 0,

then S(v) = V(G).

Definitions If z¥e€ Dl(x)-Dt(x). for some t> 2,

define C(z*) to be the set of all alternating chains
from x to z¥. Since z*géDt(x). then by definition of
Dt(x), there is a set A(z*) = fwl,....wsi QV(G)-—M(x,z*),
with minimum possible integer s<t -1, such that every
chain in C(z*) has a vertex in M(A(z¥)). Of course,
A(z*) is not necessarily uniquely determined. However,
we shall consider the set A(z¥%) to be fixed, for each

z* ¢ Dl(x) -Dt(x). We have
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|A(z*)| < t-1,
and we have
[M(A(z#))] < 2t-2.-

Prop. 10.6 Let t>2 be an integer. If

(10.6) =z eDt(x)
and if

(10.7) z*e&8(z) -D.(x),
then one of the following three statements holds:

(10.8)  z#£M(A(z*))~Dy ;(x) and z*e Dy _, (x);

(10.9) =z eM(a(z*));

(10.10) z* eM(x).

If (10.10) is false, then also,

(10.11) =z* £ P(x) + x.

Proof: Let z,z* ¢V(G) satisfy (10.6) and (10.7).
First, we claim that either (10.10) holds, or C(z¥*) is
not empty. By (10.6) and t>2, there is a chain C from
x to z avoiding M(z¥). If C passes through z¥, then
C (z*¥) is not empty. Otherwise, we extend the chain C
by adding z* at the end and we denote the resulting
sequence by C*, Since z* € S(z), C* 1s an alternating
chain, provided some vertex in M(z*) does not already
occur in C¥. By our choice of C, unless (10.10) holds,

this condition is satisfied. This Justifies the clalm.
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Henceforth, we assume that (10.10) is false and
thus that C(z*) is not empty. Therefore, A(z*) exists,
and z¥ € Dl(x). whence (10.11) follows, by Prop. 10.4,

By (10.6) and (10.7),

(10.12) z € P(z¥) ~ D (x).

Suppose by way of contradiction that (10.9) is false and

(10.13) z € Dt+l(x).

Then either there is an alternating chain C from x to z
that misses M(A(z*) + z*), or by definition of Dt+1(x).
the sets A(z*)+-z* and M(x,z) intersect.

We quickly dispose of the latter possibility.

From (10.12), z e P(z*), and hence, z¥ £M(z). Since
(10.10) is assumed to be false, z* £M(x). Since (10.9)
is assumed to be false, M(z) cannot intersect A(z¥).
Finally, the definition of A(z¥) assures us that M(x)
and A(z¥) do not overlap.

Thus, we can assume that there is an alternating
chain C from x to z that misses M(A(z¥*) 4 z¥). If z¥
does not occur in C, let C¥* denote the sequence obtained
by appending z¥* to the end of the sequence C. Since c
misses M(z*), C¥eC(z¥*), unless z* occurs in C. But if
z* occurs in C, let C¥* instead denote the subsegquence
of C terminating at z*. Since C misses M(A(z*)) and

since, by definition of A(z%*), z* also misses M(A(z¥*)),



106

so does C*e C(z*¥), contrary to the definition of A(z¥).
This contradiction shows that (10.13) is false, and
thus the first part of (10.8) holds.

Next, supposing that (10.9) and (10.10) are false,
we shall prove the last part of (10.8). e proceed by
induction on t.

As a basis for induction, we note that the fact
that C(z¥*) is nonempty implies that z*e;Dl(x), by
definition of Dl(x). Therefore, the last part of (10.8)
holds when t =2.

Suppose that Prop. 10.6 is true for integers less
than t, where t> 3. Suppose, contrary to (10.8), that

(10.14)  z*¢D, ,(x).

Thus, (10.5) and (10.6) imply

(10.15) z €D _y(x),
and (10.14) and (10.7) imply

(10.16)  z*€s(x) -D,_,(x).

Note that (10.15) and (10.16) are simply (10.6) and
(10.7) with t-1 in'blace of t. Hence, by the induction
hypothesis, since (10.9) and (10.10) are false, we must
have z£D, (x). But this contradicts (10.6) itself.

Therefore, (10.8) is proved. This proves Prop. 10.6.
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We define a succession to be an ordered pair (u,v)

of vertices such that vé€& s(u).

Prop. 10.7 There is an integer t>2 such that the

number of successions (u,v) with u<§Dt(x), v;EDt(x) is

L/3

at most p
Proof:
on different

(10.17)

(10.18)

(10.19)

+ g;»
3

We have the following three upper bounds

types of successions, for t>2.

The number of successions (u,v), with
uth(x), v & M(x) is at most 2\Dt(x)\ ;
The number of successions (u,v) with
véDt_l(x) vHM(x) and uEDt(x) ~P(v), with
|D, (x) ~P(v)] < 2t-2, is at most
(P-—(P(X)f-l-(Dt_l(X)l)(Zt-Z);

The number of successions (u,v), with
ueD (x), v£D (x) and ID, (x) ~P(v)l >2t-2
is at most

(Dy_q (X) =Dy () (2t = 24 Dy (x) =Dy 5 ().

Statement (10.17) holds because by Prop. 10.5,

IM(x)] = 2.

We obtain (10.18) by using (10.11) of Prop. 10.6, which

asserts that

of (10.19).

vZ P(x) +x. Next, we justify the bound
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Suppose that for a given vertex Vv ¢'Dt(x)*’M(x),
there are more than 2t - 2 successlions of the form (u,v),
where ue;Dt(x). Thus, we have excluded successions
counted in (10.17) and (10.18). By Prop. 10.6 with
U—z and v=2z%, there is a set M(A(v)) of at ﬁost 2t -2
vertices in V(G) such that (10.8), (10.9), or (10.10)
of Prop. 10.6 holds. We cannot have (10.10), since
v €M(x) has been excluded. Note that if for each u,
condition (10.9) holds, then there are at most 2t - 2
values of u, another case already excluded. Hence,
there is a value of u, say u=ugs, such that uoséM(A(v)).
Then we have (10.8), whence u, € Dt(x)-Dt+l(x), and

veD, ,(x). Therefore, in general, since

t-1
u € M(A(v))uJ(Dt(x)-Dt+l(X))
and
v € Dt_l(x)-Dt(x)
for all successions (u,v) not counted in (10.17) or

(10.18), the bound of (10.19) holds.

I’

We write

(10.20) a, = IDt(x)-Dt+1(x)|.

The total number of successions (u,v) with u<EDt(x),

vﬁéDt(x) is, by (10.17), (10518), and'(10.19), at most
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(10.21) a, ;(2t-2+2a.) + (p-IP(x)]-1-ID _; (x)D(2¢ -2)
' + 2D (x)
= a,_qa; + (p-1P(x)] - 1-p (x))(2t-2)
+ 2|Dt(x)l.
Let

(10.22) b = p*/3

and let

(10.23) ¢ = 2p/3.
Suppose, by way of contradiction, that for all t satis-
fyving 2<t<b/c,

(10.24) a >b-ct.

t7t-1
Since

2
0 < (,Jat - Jat_l) = at-Z.Jat,/at_l + a1,

we have from this and (10.24),
N .
(10.25) J(b-ct) 5_,/(atat_l) < g(at+at_l).
Summing (10.25) from t=2 to n=[b/c], we get
n n
(10.26) Zi o J(b-ct) < -%al-%an + Ly 5 8y
n
< thz at.
By the F‘undamenta} Theorem of Calculus, and (10.26),
3/2
(10.27) Z— - JP/° y(b-ex) ax

3c

= Jg J(b-cx) dx + 1123/0 J(b-cx) dx

IN

Jg Jb dx + 7, J(b-ct)

n

< ab o+ a5

at.
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We combine (10.22), (10.23), (10.27), Prop. 10.4, and
Prop. 10.2 to obtain .
2p,3/2
3¢
< 2p2/3

n
+ Xy o B¢

- 2p2/3 , ID,(x) =D, _; (x)]

< 2p?/3 4 p - I(R(x) + ).
< 2p2/3 + %? - 14,
which is clearly false for all p. Hence, there is a

t such that (10.24) is false.

Fix t throughout the rest of the proof so that

(10.28) < b-ct.

At |
Throughout the rest of the proof, let

(10.29) D, (x) = D(x),
for this value of t satisfying (10.28).

Thus, by (10.28), (10.29), (10.21), (10.5) and
Props. 10.4, 10.3, and 10.2, and by (10.22) and (10.23),
b-ct+ (p- IP(x)l =1~ ID(x))(2t-2) + 2[D(x)}

< b-ot4.(2t-2)§ + 2(%5)

This proves Prop. 10.7.
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Prop. 10.8 For any u,c¢ D(x), the number of succes-

sions of the form (u,v), with u,v € D(x) - Uy is at least

(ID(x)! —1)(%+max(2k.3p1/3) -.3) - pu/j-%p,

Proof: By Prop. 10.3, the number of successions of
the form (u,v), with u ¢ D(x) - u, and v # U is at least
ID(x) -uol (% + max(2k,3pl/3) -2- \moﬂ).

By Prop. 10.7, at most pu'/3 + 2p of these are not of

3
the form with ve¢D(x). This implles the proposition.

Prop. 10.9 There are distinct vertices uo,vo in

D(x) such that
(10.30)  {P(uy) ~D(x)| 2 IP(vy) nD(x) > 5.
Proof: Let u, ¢ D(x) be a vertex having the most
predecessors in D(x). Let vy denote a vertex in D(x) -y,
having the most predecessors in D(x) - Ug- Clearly,
the first inequality of (10.30) holds. Note that
lP(vO) ~D(x)| is at least the average number of succes-
sions per vertex in D(x) - U5, whence, by Prop. 10.8,
(10.31) 1B(vy) ~D(x)! 2 24 nax(2k, 3p2/3) - 3

_ 94/3+ 2p/3
ID(x)] - 1

By Prop. 10.3, and since S(x) € D(x),
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(10.32) |D(x)-12> |s(x)] -1
> 2, max(2k,3pl/3) -3

3 .
b
>3.
By (10.31) and (10.32), _
\P(vO)AD(x)l> % + max(2k.3pl/3)-3-3P1/3-'2
2 _
2 3 5

and hence, (10.30) holds.

Remarks: Vertices U and Vo satisfying Prop. 10.9
are chosen, and will reméin fixed throughout the rest of
the proof of Theorem 10.1.

Also, for the remainder of the proof, we shall use
(10.1) and Props. 10.2 and 10.3 in their weaker form,
without the term involving p1/3. Thus, the inequalities

of (10.1) and Props. 10.1 and 10.2 will be replaced by

a(G%) _<_}32 - X,

1P(v)} > -‘3’- + 2k - 2,

IS(v)| > }33 + 2k - 2,
respectively.

Prop. 10.10 We have both

\s(x)np(uo)\ > 4x - 8,
and
IS(x) ~P(vy)l > bk -8,

where u, and vy are the fixed vertices of Prop. 10.9.
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Proof: Since the proofs are identical for u,
and Vg, we shall only state the proof f?r X By
Prop. 10.2,
(10.33) V(&) -P(x)! < 82 - 2K+ 2.
Since, by Prop. 10.4,
D(x) € V(G) - P(x) - x,
(10.33) gives
(10.34)  ID(x) < %p— - 2k4 1.
By (10.34), Proo. 10.9, Prop. 10.3, and S(x) € D(x),
we have
[S(x) ~ P(vy) ~D(x)| 2 (8(x) ~D(x) =+
lP(vo)-ﬂD(x)l - ID(x)I
> (Bazk-2) » (B-5) - (B - 2k41)
> 4k - 8.

Prop. 10.11 Suppose that vy and A satisfy

(10.35) vlé S(vo) - M(x)
and
(10.36) v, ¢ S(vl) - M(x,vo).
Then v, & P(x) + x, and either Vy=V, OT
[s(v,) - (P(x) +x)| 2 132 + 2k - 8.

A similar statement holds when vo,vl,v2 are replaced

by uo,ul,uz, respectively.



114

Proof: By Prop. 10.10, since k>4, there is a
vertex

X3 € S(x)"P(vo) - M(vl,vz) - ivo,vl,vz’x,

and x, ¢ S(x) ~ P(vo) guarantees that xl;éM(x,vO) and

v.< S(xl). We claim that X2 Xy sV Vs V5 is an alterna-

0
ting chain, or that Vg=Voe To see this, observe first
that (10.2) holds for this sequence. Suppose next,
that (10.3) fails for this sequence. By the choice
of x,, xl;éix,vo.vl,vzi. Thus, for (10.3) to fail,
either x & ?v"o,vi{ OT Vo=V, If x ¢ {vo,v13 , thcn eithier

x.xl,v or x,xl,vo,v:L is a closed alternating chain,

0
whence (x x, v.)m or (x X, Vo vl)n, respectively,

1 0
embeds H into G, contrary to the assumption that H 1is
not a subgraph of G. If Vo="Vo then the proposition
follows immediately, since vO¢P(x) + X. Suppose,
finally, that x,xl,vo,vl,v2 is not an alternating
chain because (10.4) fails. Thus, there are vertices
. Y1192€ X4V V) .V5 ]
such that y, GM(yz). By definition of successors,
yl and yz cannot be consecutive vertices of x.xl,vo,vl,vz.
Since vO€D(x), we have VO¢M(x). By the definitions of

V)i Vo and Xy, We exclude vle:M(x). vzc—M(x). v1GM(x1),

v, €M(x,) and v,€M(vy). Thus, if vy # v,, then (10.2),
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(10.3), and (10.4) hold, and so X,X;,V4,Vy,V5 is an
alternating chain.

If v, ¢P(x) + x, then we are done, for

2

(x X Y9 vy v2)n would be an embedding of H into G.
If there exlsts a vertex

v. € S(vz)f\P(x) - M(vo,vl,xl).

3
then x’xl’vO'vl'VZ’VB'x is a closed alternating chain,
and we are done, for (x Xy Vo ¥y Vo v3)n embeds H into
G. Otherwise, all members of S(vz)f\(P(x)+-x) lie in
M(VO,vl;xl), a set of at most 6 members. The number
of successors of v, outside of P(x) 4+ x 1s therefore,
by Prop. 10.3, at least % + 2k -2 -6. This proves
Prop. 10.11.

Prop. 10.12 For any two vertices u and v in v(G),

the number of predecessors of u adjacent in G to v is
at least 3k - 3.
Proof: By Proo. 10.2,
IP(w)l > B 4 2x - 2.

3
Since
a(G%) 5_133 - k,
at most £-k+ 1 vertices of P(u) are adjacent in G°

3

to v (one is equal). This leaves at least

(% + 2k = 2) - (% -k + 1)

predecessors of u adjacent to V.
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Prop. 10.13 For any two vertices u and v in V(G),

the number of sﬁccessors of u that are adjacent in G
to v is at least 3k - 3.

Proof: Use the proof of Prop. 10.12, with Prop.
10.2 replaced by Prop. 10.3.

Prop. 10.14 Suppose that v, satisfies (10.35).

Let Yy+2p be two vertices of G such that Y1 is adja-
cent in G to all successors of Vi Then the number of
successors of A2 outside‘P(x)q-x that are adjacent in G
to Z, and Y is at least 3k - 7.

Proof: By the first conclusion of Prop. 10.11,
at most 4 successors v, of vy lie in P(x) 4+ x (namely,
M(x,vo)), whence, by Prop. 10.3, at least

|S(v1) - P(x) - x| > % + 2k -6

successors of vy 1ie outside P(x) + x. At mosﬁ
% - k + 1 of these are not adjacent in G to 22’ by
(10.1). All are adjacent to Yy by hypothesis. This
leaves at least 3k -7 vertlces.

Prop. 10.15 If v, satisfies condition (10.36)

2
of Prop. 10.11 and if v2 # VO’ then

\S(vz)r\P(vo) - (P(x) +x)] > bk -1k,
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Proof: By Prop. 10.11,
(10.37) 15(vy) - (P(x)+x) 2 5 4 2k - 8.
By Prop. 10.4 and 10.9,
(10.38) [P(vy) - (P(x) +x)l > IP(vO)'~D(x)|
> % - 5.
By (10.37), (10.38), and Prop. 10.2,
[S(v,) ~P(vy) = (P(x)+x) 2 IS(vy) - (P(x) + %)
+ (P(vg) - (P(x) + x)} - V(G) - (P(x)+x)
> (%4-2kl-8) + (%‘L 5) - p+ % + 2k -1
= b4k - 14,

Prop. 10.16 For appropriate vertices xle S(x),

u, € S(uo)-M(x), vy € S(vo)-M(x), and zlG}V(G), one of

1
the following six cases holds:

(10.39)  x; € M(vy);
(10.40) X, € M(ul);

(10.41) ¢ M(uy);

V1
(10.42) #(zy) = ¥xy,v93;
(10.43) HM(zy) = xy.uy3%s
(10.44) M(z)) = fuy,vqi.
Proof: Let
X = (8(x)~ (8(ug) - M(x))) v (8(x) ~(S(vy) -M(x)))
v((s(uy) - MEx)) ~ (S(vy) - M(x))),
and let

X' = S(x)&/S(uO)‘JS(vO) - M(x).
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Note that the definitions of S(x),X, and X' imply that
these sets are disjoint from M(x). If ﬂ10.39). (r0.40),
and (10.41) are false, then for any vertex z €X,
M(z) € V(G) - X'.

If also, (10.22), (10.43), and (10.44) aré false, then
the sets M(z), where z runs over X, are disjoint sets
of 2 elements contained in V(G) - X'. Hence,

(10.45) iv(Gg) - X'l > 2IX1,

By Prop. 10.3, we have

1S(x) =XV a I1XI

v

[8(x)]
> 54 2k -2
[S(ug) - M(x) - XI + IX] 215(uy) - M(x)|
> }33 + 2k - b,
1S(vy) - M(x) = XI & (X} 2 I8(vy) - M(x)|
. > % + 2k - 4,

whence,
(10.46) [S(x) - XI 4IS(uy) - M(x) - X[+ [8(v)) -M(x) - X
+ 31XI2 p + 6k - 10.
We also have
(10.47) [s(x) - X| #I8(uy) - M(x) - X+ IS(vy) - M(x) - X
+ 1X1 = 1X'.
We combine (10.46) and (10.47) to obtain
p4+ 6k - 10 < |\X'l 4 21X|,
whence |

p - IX'| +6k-10 < 21X/,
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and so, since 6k >10,
(V(G) - X'| < 21XI,
ip contrafiction with (10,45). Prop. 16.16 follows.
In the two lemmas below, we define for vertices of G,
X = {xo,xl,....xni;
V = iyo,vl,...,vmiz

a

(xo xl e o e Xn);

B = (vo vl LR ) Vm).
Let G 4 ?xi.vji denote the graph obtained from G by
adding to E(G) the edge ?xi.v1i, where xi.ij-V(G).

Lemma 10.17 Let xo.xl....,x Xq be a closed alter-

nating chain in G+-§x2.v1%, and let vo,vl,....vm,vO
be a closed alternating chain 1in G4-ixl.v21. If

(10.48) X C‘M(vl)v

1

(10.49) x €X,

(10.50) 1x,,v,} € E(G),
and 1if

(10.51) VA (M(X)<“X) = vy,
then pam is an embedding of H into G.

Proof: By (10.48), there is an edge e' of H mapped
by m to RSE Recall that e is the edge of H not mapped
into E(G) by m and that xc n(e). ‘

By hypothesis and by (10. h9). am embeds H into

Gq.fxz,vl} and maps e' to ?xz,vli. Also, by hypothesis,
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B embeds H-e into G+-§x1.v2§, and maps e' to le.vzi.

By (10.51), e' is the only edge of H affected by both

a and 8. Hence, pan embeds H-e' into G, and since
par(e) = §x,,V,i € E(G),

by (10.50), Bam embeds H into G.

Lemma 10.18 Let xo,xl.....xn,xo be a closed alter-

nating chain in G4-?x2,z1?, and let vo.vl....,vm,vO
be a closed alternating chain in Ga-ivz.zli. Also,
let Z = {zy,2,}, and let y = (z1 z2). Ir

(10.52) M(zl) = Tvy. X33,

(10.53) x€X,

(10.54) iv2,227.§x2.zéi€1E(G).

(10.55) (Vez)~(M(X)vX) = 7y

(10.56) (X ~2Z) ~(M(V)~=V)

Zy»
and if

(10.57) z,¢€P(zy),
then yBam embeds H into G.

Proof: By (10.52), there are edges e,,e,, respec-
tively, mapped by ﬁ/to {xl.zli and {zl,vli. Recall that
e is the only edge of H not mapped into E(G) by w, and
that xen(e).

By the first hypothesis, and by (10.53), an embeds

H into Gq.ixz,zli, with el mapped to ixz,zl}. Also,
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by hypothesis, Bw embeds H-e into G4-§v2.zli. By
(10.55) and (10.56), no edge of H is affected by both
o« and B. Therefore, pan embeds H into é4-ix2.zii4-iv2.zli,

with e mapped to §x2,zlﬁ,§v2,zlj, respectively. By

1'%2
(10.55) and (10.56), ey respectively e,, is the only
edge affected by both a and Y, respectively p and Y.
Hence, (10.57) énsures that ypan embeds H-}el,ezi into
G, and since ypam maps el and e, to ?x2,227 andivz,zzi,
(10.54) ensures that ypBam embeds H into G.

Remark: In the six cases of Prop. 10.16.which we
consider below, we shall verify the hypotheses of
either Lemma 10.17 or Lemma 10.18, whence we conclude
that H is a subgraph of G. We shall construct the
desired alternating chains one vertex at a time. Each
time another vertex is chosen, we take care to ensure
that (10.51) or both (10.55) and (10.56) hold, althousgh
we shall not say so explicitly. As chains are construc-
ted, we select vertices which satisfy (10.2), (10.3),
and (10.4). Again, we do not refer to these three
conditions explicitly. The other conditions of the
lemmas will be verified explicitly in each of the six

cases.
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Suppose (10.39) holds. We shall apply Lemma 10.17

t

to show that (v0 v, v, v3) (x Xy x2)n embeds H into G,
for vertices vZ,vs, X, defined below. We must verify
the hypotheses of the lemma. If xle.M(vO). then we pick
v, to equal v,. This is in compliance with (10.39).
Already by (10.39), we have (10.48), and clearly we have
(10.49). By Prop. 10.5, there exists wle V(G) such that
Define the set

T, = ivo,vl.wl.x.xlik'M(vO.vl,x.xl).
Since xl,vl. and Wy are counted twice,

ITll < 10.
By Prop. 10.12, since

3k-3 > 10 > |T1|.
‘a vertex X, ¢ P(x)-—Tl exists adjacent in G to w,. Thus
X, is a successor of xl in G.yixz,vli, whence x,xl,xz,x
is the desired alternating closed chain in G4-1x2.vﬁ .
Let

T, = Tltz(y(x2)4.x2).
Hence, /

lTZ( < 13.
By Prop. 10.13, since

3k -3 > 13 > |T,],

a vertex v2€.S(vl)--T2 exists adjacent in G to x,, in
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accordance with (10.50). Let

T, = TZ‘J(M(v2)4.v2).

3
Thus,
T.! < 16.
| 3\ <1
Ir Vs, eP(vo) + Voo then let v3=v2. Otherwise, by Prop.

10.15, since

b - 14 > 16 > (T.I,

3

there is a vertex

v, € S(VZ)AP(vd) - (P(x) +x) - T3.

3
Thus, vO’vl'VZ’VB'vO is a closed alternating chailn in G-

G4.§v2,xii, as desired. We have chosen the vertices

Vi V3sXy SO that (10.51) holds, whence Lemma 10,17 may

be applied.

Suppose (10.40) holds. This case proceeds as does

the previous case with (10.39), but with v replaced by u,
and so we omit the proof.

Suppose (10.41) holds. We shall apply Lemma 10.17

. L ]
to show that (vO vy Y, v3) (uO u; X, Xg Xu)TT embeds
H into G, for vertices v2,v3,x2.x3,xu defined below.
We must verify the hypotheses of the lemna. Let

X3 = X.
Thus, (10.49) holds. We shall apply Lemma 10,17 with

u, corresponding to x, of the lemma, whence by (10.41),
1

1

(10.48) holds. If v G:M(uo), then let u) =Y, in this

1

argument. Define the set

T1 = ;uO,vO,xf vM(uo.ul.vO,vl.x).
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By (10.41), 3u1,v11€2T1, and so by Prop. 10.10, since

bk -8 > 13 > ITy1,
there is a vertex x, ¢ S(x) AP(uO) - Tl'. By Prop. 10.5,
there exists wléV(G) such that

M(ul) = 1vy,W7.
Define

T, = T, v (M(x,) +%,)
By Prop. 10.12, since

3k-3 > 16 > Ty,
there is a vertex x, ¢ P(x) - T, ad jacent in G to w,.
Observe that uO'ul'XZ'XB’xL&'uO is a closed alternating
chain in G+ ?vl,xz'y. Thus, we have the first desired
chain of Lemma 10.17. Define

Ty =Ty~ (M(x,) +x5).
By Prop. 10.13, since

3% -3 > 19 > |T3|.
a vertex v, € S(vl) - T3 exists adjacent in G to x,, in
compliance with (10.50). If vzeP(vo) +Vy, then let
v

=V Otherwise, by Prop. 10.15, since

37 °2°

Lx - 14 > 19 > lT3|,
a vertex

v, € S(vz)nP(vo) - T3 - (P(x) + x)

3
exists. Since v3€S(v2), we have v3¢M(v2). Thus,
vO’Vl’VZ'VB’vO is a closed alternating chain in G4.§x1,v23
that satisfies the conditions of the first chain lemma.

By the lemma, H is a subgraph of G.
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Suppose (10.42) holds. We shall apply Lemma 10.18

to show that (zllzz)(vO vy Vs, v3r (x X3 x2)n embeds H
into G. Thus, we already have (10.52) and (10.53).
Without loss of generality, we may assume -in this

case that Xy ¢'M(v0), for othefwise, we would use the
argument associated with (10.39). By Prop. 10.5, and
be (10.42), there is a vertex wl<EV(G) such that

M(xl) = fwl’zl}ﬂ
If the vertex of H mapped to Xy lies in a triangular
component of H, then Wy =y and the triangle is mapped
to the vertices x,,v;,z;, and hence (10.39) holds.
Hence, without loss of generality, we may assume that
wl,xl,zl,vl are distinct vertices in the image of a-path
of H. Thus, for the vertices of V,X, and Z already
selected, (10.55) and (10.56) hold. ' Define

T, = {vo.wl.xiL/M(vo.vl.x,zl).
Note that

) €T

¢ M(V = 1

VivX10% 1°%1
and that
[T, < 11.
By Prop. 10.12, since
3k-3>11 > [Ty,

a vertex x, €P(x)--T1 exists adjacent in G to w;. Thus,
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x.xl.xz.x is a closed alternating chain in G-+ix2,zli,
in compliance with Lemma 10.18. Define
T

= T ~J(M(x2)4-x2).

2 1
By Prown. 10.12, since
3k-3 > 14 > 1T2\,
a vertex z2<=.P(zl)--T2 exists adjacent in G to X,, in
accordance with (10.57) and the second part of (10.54).
Define
By Prop. 10.5 and (10.42), there exists ylé.V(G) such that
M(vl) = lyltzli .
Since ylé-M(vl), yy is ad jacent in G to all successors of

v GS(VO)-M(X). By Provp. 10.14, since

3l.

a vertex v, ¢(P(x)+x)v'l‘3 exists adjacent to y; and z,.

1
k-7 > 17 > |T

Hence, (10.54) holds. Define
T), = T3"(M(V2)*'v2)'

If v, ¢ P(v0)4-vo, then let Vy=Vpe Otherwise, by Prop.

2
10.15, since e

bk - 14 > 18 > | Ty,
a vertex V3 € S(vz)f\P(vo) - Tu - (P(x) + x) exists. Thus,
vo,vl,vz,v3,vO is a closed alternating chain in G-yfvz.zlft
as required by Lemma 10.18. Since we have verified the

requirements of the lemma, H is a subgraph of G.
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Suppose (10.43) holds. This case proceeds just

like the proceeding case, except that w is substituted
for v. Thus, we omit the details.

Suppose (10.44) holds. We apply Lemma 10.18 to

A ] ]

show that (z1 z2)(vO vy Y, v3) (u0 u; X, x3 xu)n

embeds H into G, for vertices v2,v3,x2,x3,x4.22 defined

below. Let
XB':X.

Thus, we have (10.53), and by (10.44) with uy equal to

Xy of Lemma 10.18, we have (10.52). If vlé M(uo). Lnen
let U, = Uy in this argument. Let
Tl = iuo,vo,xiL/M(uo,ul,vo,vl,x,zl).

Note that by (10.44),
iul,v]} = I‘i(zl) < Tl' '
and that since zl€ M(ul)f~M(v1) is twice counted,
ITy( < 1b,
By Prop. 10.10, since

Lk -8 > 14 > {T.1,

1
a vertex xué.S(x)A P(uo) - Tl exists. By Prop. 10.5 and
(10.44), there exists a vertex wlé V(G) such that

M(ul) = izl,wlﬁ.
Let

T, = T, v (M(x“’) + Xu).

2 1
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If the vertex of H mapped to zy lies in a triangular
component of H._then V) =W and the triangle is em-
bedded onto Zy2UysVq and (10.41) holds. Hence, without
loss of generality, we may assume that wl.ul.zl,v1 are
distinct successive vertices in the image of a path of
H. Thus, for the vertices already selected, (10.55)
and (10.56) hold.
By Prop. 10.12, since

k-3 >17 2 |T2l.
a vertex x2€ P(x)--T2 exists adjacent in G to wy.
Observe that uO'ul'XZ’xj'Xu’uO is thus a closed alter-
nating chain in G4-fx2.zlﬁ. Thus, we have the first
of the alternating chains of Lemma 10.18. Define

T3 = TZU(P'I(x2)+X2).
By Prop. 10.12, since

3k -3 > 20 > lTB\.
a vertex z2€EP(zl)--T3 exists adjacent in G to x,.
Hence, the second part of (10.54) holds, and (10.57)
holds. By Prop. 10.5, and by (10.44), there is a
vertex yle'V(G) such that

M(vy) = §y1.%7.
Since ylG.M(vl), y, 1is ad jacent in G to all successors
of v, € S(v,) - M(x). Let .

Tu = TB\'M(ZZ).
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By Prop. 10.14, since

3k-7 > 19 2 (T, - Wy, x,yy8l
a vertex

vy & (P(x) 4+ x) Y (T, - 1v5,X,5;5)
exists adjacent in G to y; and z,. This verifies (10.54).
If v2<EP(v0)4-vo. then let vqy=v,. Otherwise, since

bk =14 > 19 > |1, - (H(v,) +vo)l,
Prop. 10.15 implies that there is a vertex

v, & 8(v,) ~P(vy) - T, - (P(x)+x).

3
Thus, vO’vl'VZ’VB’VO is a closed alternating chain in
Gq-{vz,zl}. " The other conditions of Lemma 10.18 may
be readily verified. Thus, H is a subgraph of G.

This completes the proof of Theorem 10.1.
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