AN IMPROVEMENT ON BROOKS' THEOREM

LANDON RABERN

ABSTRACT. We prove that $\chi(G) \leq \max \left\{ \omega(G), \Delta_2(G), \frac{5}{6}(\Delta(G)+1) \right\}$ for every graph G with $\Delta(G) \geq 3$. Here Δ_2 is the parameter introduced by Stacho that gives the largest degree that a vertex v can have subject to the condition that v is adjacent to a vertex whose degree is at least as large as its own. This upper bound generalizes both Brooks' Theorem and the Ore-degree version of Brooks' Theorem.

1. Introduction

Brooks' Theorem [1] gives an upper bound on a graph's chromatic number in terms of its maximum degree and clique number.

Brooks' Theorem. Every graph with $\Delta \geq 3$ satisfies $\chi \leq \max\{\omega, \Delta\}$.

In [6] Stacho introduced the graph parameter Δ_2 as the largest degree that a vertex v can have subject to the condition that v is adjacent to a vertex whose degree is at least as large as its own. He proved that for any graph G, the bound $\chi(G) \leq \Delta_2(G) + 1$ holds. Moreover, he proved that for any fixed $t \geq 3$, the problem of determining whether or not $\chi(G) \leq \Delta_2(G)$ for graphs with $\Delta_2(G) = t$ is NP-complete. It is tempting to think that an analogue of Brooks' Theorem like the following holds for Δ_2 .

Tempting Thought. There exists t such that every graph with $\Delta_2 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_2\}$.

Unfortunately, using Lovász's ϑ parameter [2] which can be computed in polynomial time and has the property that $\omega(G) \leq \vartheta(\overline{G}) \leq \chi(G)$ we see immediately that if $P \neq NP$, then the tempting thought cannot hold for any t. In the final section we give a construction showing that this is indeed the case whether or not $P \neq NP$. However, if we limit how far from $\Delta + 1$ our upper bound can stray, we can get a generalization of Brooks' Theorem involving Δ_2 .

Main Theorem. Every graph with $\Delta \geq 3$ satisfies

$$\chi \le \max \left\{ \omega, \Delta_2, \frac{5}{6}(\Delta+1) \right\}.$$

In addition to generalizing Brooks' Theorem, this also generalizes the Ore-degree version of Brooks' Theorem as introduced by Kierstead and Kostochka in [3] and improved in [5].

Definition 1. The *Ore-degree* of an edge xy in a graph G is $\theta(xy) = d(x) + d(y)$. The *Ore-degree* of a graph G is $\theta(G) = \max_{xy \in E(G)} \theta(xy)$.

Note that $\Delta_2 \leq \lfloor \frac{\theta}{2} \rfloor \leq \Delta$. In [5] the following bound was proved. The graph O_5 exhibited in [3] shows that the $\theta \geq 10$ condition is best possible.

Ore Version of Brooks' Theorem. Every graph with $\theta \geq 10$ satisfies $\chi \leq \max \{\omega, \lfloor \frac{\theta}{2} \rfloor \}$.

Proof. Suppose the theorem is false and choose a counterexample G minimizing |G|. Plainly, G is vertex critical. Thus $\delta(G) \geq \chi(G) - 1$. In particular, $\theta(G) \geq \delta(G) + \Delta(G) \geq \chi(G) + \Delta(G) - 1$. Hence $\Delta(G) \leq \chi(G)$. Applying the Main Theorem, we conclude $\Delta(G) \leq \chi(G) \leq \frac{5}{6}(\Delta(G) + 1)$ and hence $\Delta(G) \leq 5$. But then $\theta(G) = 10$ and we must have $\chi(G) \geq 6$. Now applying Brooks' Theorem gets the desired contradiction.

In fact, a similar proof shows that a whole spectrum of generalizations hold.

Definition 2. For $0 \le \epsilon \le 1$, define $\Delta_{\epsilon}(G)$ as

$$\left| \max_{xy \in E(G)} (1 - \epsilon) \min\{d(x), d(y)\} + \epsilon \max\{d(x), d(y)\} \right|.$$

Note that $\Delta_1 = \Delta$, $\Delta_{\frac{1}{2}} = \lfloor \frac{\theta}{2} \rfloor$ and $\Delta_0 = \Delta_2$.

Theorem 1. For every $0 < \epsilon \le 1$, there exists t_{ϵ} such that every graph with $\Delta_{\epsilon} \ge t_{\epsilon}$ satisfies

$$\chi \leq \max\{\omega, \Delta_{\epsilon}\}.$$

It would be interesting to determine, for each ϵ , the smallest t_{ϵ} that works in Theorem 1. In the final section we give a simple construction showing that $t_{\epsilon} \geq 1 + \frac{2}{\epsilon}$. The Main Theorem implies $t_{\epsilon} < \frac{6}{\epsilon}$.

2. Rephrasing the problem

Definition 3. For a graph G and $r \geq 0$, let $G^{\geq r}$ be the subgraph of G induced on the vertices of degree at least r in G. Let $\mathcal{H}(G) = G^{\geq \chi(G)}$.

We can rewrite the definition of Δ_2 as

$$\Delta_2(G) = \min \{ r \ge 0 \mid G^{\ge r} \text{ is edgeless} \} - 1.$$

In particular we have the following.

Observation. For any graph G, $\chi(G) > \Delta_2(G)$ if and only if $\mathcal{H}(G)$ is edgeless.

This observation will allow us to prove our upper bound without worrying about Δ_2 .

3. Proving the bound

We will use part of an algorithm of Mozhan [4]. The following is a generalization of his main lemma.

Definition 4. Let G be a graph containing at least one critical vertex. Let $a \geq 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. By a (r_1, \ldots, r_a) -partitioned coloring of G we mean a proper coloring of G of the form

$$\{\{x\}, L_{11}, L_{12}, \dots, L_{1r_1}, L_{21}, L_{22}, \dots, L_{2r_2}, \dots, L_{a1}, L_{a2}, \dots, L_{ar_a}\}.$$

Here $\{x\}$ is a singleton color class and each L_{ij} is a color class.

Lemma 2. Let G be a graph containing at least one critical vertex. Let $a \ge 1$ and r_1, \ldots, r_a be such that $1 + \sum_{i} r_i = \chi(G)$. Of all (r_1, \ldots, r_a) -partitioned colorings of G pick one (call it π) minimizing

$$\sum_{i=1}^{a} \left\| G\left[\bigcup_{j=1}^{r_i} L_{ij}\right] \right\|.$$

Remember that $\{x\}$ is a singleton color class in the coloring. Put $U_i = \bigcup_{i=1}^{r_i} L_{ij}$ and let $Z_i(x)$ be the component of x in $G[\{x\} \cup U_i]$. If $d_{Z_i(x)}(x) = r_i$, then $Z_i(x)$ is complete if $r_i \geq 3$ and $Z_i(x)$ is an odd cycle if $r_i = 2$.

Proof. Let $1 \le i \le a$ such that $d_{Z_i(x)}(x) = r_i$. Put $Z_i = Z_i(x)$.

First suppose that $\Delta(Z_i) > r_i$. Take $y \in V(Z_i)$ with $d_{Z_i}(y) > r_i$ closest to x and let $x_1x_2\cdots x_t$ be a shortest x-y path in Z_i . Plainly, for k < t, each x_k hits exactly one vertex in each color class besides its own. Thus we may recolor x_k with $\pi(x_{k+1})$ for k < t and x_t with $\pi(x_1)$ to produce a new $\chi(G)$ -coloring of G (this can be seen as a generalized Kempe chain). But we've moved a vertex (x_t) of degree $r_i + 1$ out of U_i while moving in a vertex (x_1) of degree r_i violating the minimality condition on π . This is a contradiction.

Thus $\Delta(Z_i) \leq r_i$. But $\chi(Z_i) = r_i + 1$, so Brooks' Theorem implies that Z_i is complete if $r_i \geq 3$ and Z_i is an odd cycle if $r_i = 2$.

Definition 5. We call $v \in V(G)$ low if $d(v) = \chi(G) - 1$ and high otherwise.

Note that in Lemma 2, if $d_{Z_i(x)}(x) = r_i$ then we can swap x with any other $y \in Z_i(x)$ by changing π so that x is colored with $\pi(y)$ and y is colored with $\pi(x)$ to get another minimal $\chi(G)$ -coloring of G.

Lemma 3. Assume the same setup as Lemma 2 and that x is low. If $i \neq j$ such that $r_i \geq r_j \geq 3$ and a low vertex $w \in U_i \cap N(x)$ is adjacent to a low vertex $z \in U_i \cap N(x)$, then the low vertices in $(U_i \cup U_j) \cap N(x)$ are all universal in $G[(U_i \cup U_j) \cap N(x)]$.

Proof. Suppose $i \neq j$ and a low vertex $w \in U_i \cap N(x)$ is adjacent to a low vertex $z \in U_i \cap N(x)$. Swap x with w to get a new minimal $\chi(G)$ -coloring of G. Since w is low and adjacent to $z \in U_i \cap N(x)$, w is joined to $U_i \cap N(x)$ by Lemma 2. Similarly z is joined to $U_i \cap N(x)$. But now every low vertex in $U_i \cap N(x)$ is adjacent to the low vertex $z \in U_i \cap N(x)$ and is hence joined to $U_j \cap N(x)$. Similarly, every low vertex in $U_j \cap N(x)$ is joined to $U_i \cap N(x)$. Since both $U_i \cap N(x)$ and $U_j \cap N(x)$ induce cliques in G, the proof is complete.

Theorem 4. Fix $k \geq 2$ and let G be a vertex critical graph with $\chi(G) \geq \Delta(G) + 1 - k$. If $\Delta(G) + 1 \geq 6k$ and $\mathcal{H}(G)$ is edgeless then $G = K_{\gamma(G)}$.

Proof. Suppose that $\Delta(G) + 1 \geq 6k$ and $\mathcal{H}(G)$ is edgeless. Since $\Delta(G) + 1 \geq 6k$ we have $\chi(G) \geq 5k$ and thus we can find r_1, \ldots, r_{k+1} such that $r_1, r_2 \geq k+1, r_i \geq 3$ for each $i \geq 3$ and $\sum_{i=1}^{k+1} r_i = \chi(G) - 1$. Note that $r_i \geq 3$ for each i since $k \geq 2$. Put a = k + 1. Of all (r_1, r_2, \dots, r_a) -partitioned colorings of G, pick one (call it π)

minimizing

$$\sum_{i=1}^{a} \left\| G\left[\bigcup_{j=1}^{r_i} L_{ij}\right] \right\|.$$

Remember that $\{x\}$ is a singleton color class in the coloring. Throughout the proof we refer to a coloring that minimizes the above function as a *minimal* coloring. Put $U_i = \bigcup_{j=1}^{r_i} L_{ij}$ and let $C_i = \pi(U_i)$ (the colors used on U_i). For a minimal coloring γ of G, let $Z_{\gamma,i}(x)$ be the component of x in $G[\{x\} \cup \gamma^{-1}(C_i)]$. Note that $Z_i(x) = Z_{\pi,i}(x)$.

First suppose x is high. Since a > k we have $1 \le i \le a$ such that $d_{Z_i(x)}(x) = r_i$. Thus $Z_i(x)$ is complete. Since $\mathcal{H}(G)$ is edgeless, each vertex in $Z_i(x) - x$ must be low. Hence we can swap x with a low vertex in U_i to get another minimal $\chi(G)$ coloring. Thus we may assume that x is low. Consider the following algorithm.

- (1) Put $q_0(y) = 0$ for each $y \in V(G)$.
- (2) Put $x_0 = x$, $\pi_0 = \pi$, $p_0 = 1$ and i = 0.
- (3) Pick a low vertex $x_{i+1} \in Z_{\pi_i,p_i}(x_i) x_i$ minimizing $q_i(x_{i+1})$. Swap x_{i+1} with x_i . Let π_{i+1} be the resulting coloring.
- (4) If there exists $d \in \{3, \ldots, a\} \{p_i\}$ with $\left| V(Z_{\pi_{i+1}, d}(x_{i+1})) \cap \bigcup_{j=1}^i x_j \right| = 0$, then let $p_{i+1} = d$. Otherwise pick $p_{i+1} \in \{1, 2\} \{p_i\}$.
- (5) Put $q_i(x_i) = q_i(x_{i+1}) + 1$.
- (6) Put $q_{i+1} = q_i$.
- (7) Put i = i + 1.
- (8) Goto (3).

Since G is finite we have a smallest t such that for p=1 or p=2 with $p \neq p_{t-1}$ we have $|\{y \in V(Z_{\pi_t,p}(x_t)) - \{x_t\} \mid q_t(y) = 1\}| = k$. Let x_{t_1}, \ldots, x_{t_k} with $t_1 < t_2 \cdots < t_k$ be the vertices in $V(Z_{\pi_t,p}(x_t)) - \{x_t\}$ with $q_t(x_{t_j}) = 1$.

Swap x_t with x_{t_1} and note that x_{t_1} is low and adjacent to each of $x_{t_1+1}, \ldots, x_{t_k+1}$. Also note that $\{x_{t_1+1}, \ldots, x_{t_k+1}\}$ induces a clique in G since all those vertices are in U_p . By the condition in step (4) we see that $\{p_{t_1+1}, p_{t_2+1}, \ldots, p_{t_k+1}\} = \{1, \ldots, a\} - \{p\}$. Thus the low vertices in $\bigcup_{i\neq p} \pi_t^{-1}(C_i) \cap N(x_{t_1})$ are universal in $G\left[\bigcup_{i\neq p} \pi_t^{-1}(C_i) \cap N(x_{t_1})\right]$ by Lemma 3. Also since x_t is low and is joined to $\pi_t^{-1}(C_i) \cap N(x_{t_1})$ for each $i\neq p$, again applying Lemma 3 we get that the low vertices in $N(x_{t_1}) \cup \{x_{t_1}\}$ are universal in $G[N(x_{t_1}) \cup \{x_{t_1}\}]$.

Put $F = G[N(x_{t_1}) \cup \{x_{t_1}\}]$ and let S be the set of high vertices in F. Note that $|F| = \chi(G)$ and $|S| \leq k + 1$ since $\mathcal{H}(G)$ is edgeless. We will show that F is complete. Since all the low vertices in F are universal in F, it will suffice to show that $|S| \leq 1$.

Suppose otherwise that we have different $w, z \in S$. Then w and z are non-adjacent since $\mathcal{H}(G)$ is edgeless. Color G - F with $\chi(G) - 1$ colors. This leaves a list assignment L on F with $|L(v)| \geq d_F(v) - k$ for each $v \in V(F)$. Thus $|L(w)| + |L(z)| \geq d_F(w) + d_F(z) - 2k \geq 2(|F| - |S|) - 2k \geq 2(\Delta(G) - 2k) - 2k = 2\Delta(G) - 6k$. Since $\Delta(G) + 1 \geq 6k$ and $k \geq 2$, we have $|L(w)| + |L(z)| \geq 2\Delta(G) - 6k \geq \Delta(G) + 1 - k$. Hence we have $c \in L(w) \cap L(z)$. Color both w and z with c to get a new list assignment L' on $F' = F - \{w, z\}$. Put $A = G[S - \{w, z\}]$. Then we can complete the coloring to A since for any $v \in V(A)$ we have $|L'(v)| \geq d_{F'}(v) - k \geq d_A(v) + |F| - |S| - k \geq d_A(v) + \Delta(G) - 3k \geq d_A(v) + 1$. Let J be the

resulting list assignment on B = F - S. Since the vertices in B are all low and they each have a pair of neighbors that received the same color (w and z) we have $|J(v)| \ge d_B(v) + 1$ for each $v \in V(B)$. Hence we can complete the $\chi(G) - 1$ coloring to all of F. This is a contradiction.

The k = 1 case was dealt with in [5]. The proof is similar but complicated by having to deal with odd cycles instead of just cliques. There the following was proved.

Corollary 5. $K_{\chi(G)}$ is the only critical graph G with $\chi(G) \geq \Delta(G) \geq 6$ such that $\mathcal{H}(G)$ is edgeless.

Now the proof of the Main Theorem is almost immediate.

Proof of Main Theorem. Suppose the theorem is false and choose a counterexample G minimizing |G|. Plainly, G is vertex critical. Let $k = \Delta(G) + 1 - \chi(G)$. Note that $k \geq 1$ by Brooks' Theorem. Since $\chi(G) > \Delta_2(G)$, we know by our observation above that $\mathcal{H}(G)$ is edgeless. Also, since $\chi(G) > \frac{5}{6}(\Delta(G) + 1)$ we have $\Delta(G) + 1 - k = \chi(G) \geq 5k + 1$. If $k \geq 2$ we have a contradiction by Theorem 4. If k = 1 we have a contradiction by Corollary 5. \square

4. A SIMPLE CONSTRUCTION

Let F_n be the graph formed from the disjoint union of $K_n - xy$ and K_{n-1} by joining $\left\lfloor \frac{n-1}{2} \right\rfloor$ vertices of the K_{n-1} to x and the other $\left\lceil \frac{n-1}{2} \right\rceil$ vertices of the K_{n-1} to y. It is easily verified that for $n \geq 4$ we have $\chi(F_n) = n > \omega(F_n)$, $\Delta(F_n) = \left\lceil \frac{n-1}{2} \right\rceil + n - 2$ and $\mathcal{H}(G)$ is edgeless (and nonempty). Moreover, $\Delta_{\epsilon}(F_n) = \left\lfloor (1-\epsilon)(n-1) + \epsilon \left(\left\lceil \frac{n-1}{2} \right\rceil + n - 2 \right) \right\rfloor = \left\lfloor n - 1 - \epsilon + \epsilon \left\lceil \frac{n-1}{2} \right\rceil \right\rfloor$. For $0 < \epsilon \leq 1$, choose $n_{\epsilon} \in \mathbb{N}$ maximal such that $\left\lceil \frac{n_{\epsilon}-1}{2} \right\rceil < 1 + \frac{1}{\epsilon}$. Then $\Delta_{\epsilon}(F_{n_{\epsilon}}) = n_{\epsilon} - 1$. Hence in Theorem 1, we must have $t_{\epsilon} \geq n_{\epsilon}$. By maximality, n_{ϵ} must be odd. Thus

$$n_{\epsilon} = \begin{cases} 1 + \frac{2}{\epsilon} & \text{if } \frac{1}{\epsilon} \in \mathbb{N} \\ 3 + 2 \left| \frac{1}{\epsilon} \right| & \text{if } \frac{1}{\epsilon} \notin \mathbb{N}. \end{cases}$$

In particular, $t_{\epsilon} \geq n_{\epsilon} \geq 1 + \frac{2}{\epsilon}$ for all $0 < \epsilon \leq 1$. Additionally, we see that t_0 does not exist; that is, the tempting thought is false.

REFERENCES

- [1] R.L. Brooks. On colouring the nodes of a network. Math. Proc. Cambridge Philos. Soc., 37, 1941, 194-197.
- [2] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. *Combinatorica*, 1, 1981, 169-197.
- [3] H.A. Kierstead, A.V. Kostochka. Ore-type versions of Brooks' theorem. *Journal of Combinatorial Theory*, Series B, **99**, 2009, 298-305.
- [4] N.N. Mozhan. Chromatic number of graphs with a density that does not exceed two-thirds of the maximal degree. *Metody Diskretn. Anal.*, **39**, 1983, 52-65.
- [5] L. Rabern. Δ-Critical graphs with small high vertex cliques. Journal of Combinatorial Theory Series B, In Press.
- [6] L. Stacho. New Upper Bounds for the Chromatic Number of a Graph. Journal of Graph Theory, 36(2), 2001, 117-120.