AN IMPROVEMENT ON BROOKS’ THEOREM

LANDON RABERN

Abstract. We prove that \(\chi(G) \leq \max\{\omega(G), \Delta_2(G), \frac{5}{6}(\Delta(G) + 1)\} \) for every graph \(G \) with \(\Delta(G) \geq 3 \). Here \(\Delta_2 \) is the parameter introduced by Stacho that gives the largest degree that a vertex \(v \) can have subject to the condition that \(v \) is adjacent to a vertex whose degree is at least as large as its own. This upper bound generalizes both Brooks’ Theorem and the Ore-degree version of Brooks’ Theorem.

1. Introduction

Brooks’ Theorem [1] gives an upper bound on a graph’s chromatic number in terms of its maximum degree and clique number.

Brooks’ Theorem. Every graph with \(\Delta \geq 3 \) satisfies \(\chi \leq \max\{\omega, \Delta\} \).

In [6] Stacho introduced the graph parameter \(\Delta_2 \) as the largest degree that a vertex \(v \) can have subject to the condition that \(v \) is adjacent to a vertex whose degree is at least as large as its own. He proved that for any graph \(G \), the bound \(\chi(G) \leq \Delta_2(G) + 1 \) holds. Moreover, he proved that for any fixed \(t \geq 3 \), the problem of determining whether or not \(\chi(G) \leq \Delta_2(G) \) for graphs with \(\Delta_2(G) = t \) is NP-complete. It is tempting to think that an analogue of Brooks’ Theorem like the following holds for \(\Delta_2 \).

Tempting Thought. There exists \(t \) such that every graph with \(\Delta_2 \geq t \) satisfies \(\chi \leq \max\{\omega, \Delta_2\} \).

Unfortunately, using Lovász’s \(\vartheta \) parameter [2] which can be computed in polynomial time and has the property that \(\omega(G) \leq \vartheta(G) \leq \chi(G) \) we see immediately that if \(P \neq NP \), then the tempting thought cannot hold for any \(t \). In the final section we give a construction showing that this is indeed the case whether or not \(P \neq NP \). However, if we limit how far from \(\Delta + 1 \) our upper bound can stray, we can get a generalization of Brooks’ Theorem involving \(\Delta_2 \).

Main Theorem. Every graph with \(\Delta \geq 3 \) satisfies

\[\chi \leq \max\{\omega, \Delta_2, \frac{5}{6}(\Delta + 1)\} \].

In addition to generalizing Brooks’ Theorem, this also generalizes the Ore-degree version of Brooks’ Theorem as introduced by Kierstead and Kostochka in [3] and improved in [5].

Definition 1. The Ore-degree of an edge \(xy \) in a graph \(G \) is \(\theta(xy) = d(x) + d(y) \). The Ore-degree of a graph \(G \) is \(\theta(G) = \max_{xy \in E(G)} \theta(xy) \).

Note that \(\Delta_2 \leq \left\lceil \frac{\theta}{2} \right\rceil \leq \Delta \). In [5] the following bound was proved. The graph \(O_5 \) exhibited in [3] shows that the \(\theta \geq 10 \) condition is best possible.
Ore Version of Brooks’ Theorem. Every graph with $\theta \geq 10$ satisfies $\chi \leq \max \{\omega, \left\lceil \frac{\theta}{2} \right\rceil \}$.

Proof. Suppose the theorem is false and choose a counterexample G minimizing $|G|$. Plainly, G is vertex critical. Thus $\delta(G) \geq \chi(G) - 1$. In particular, $\theta(G) \geq \delta(G) + \Delta(G) \geq \chi(G) + \Delta(G) - 1$. Hence $\Delta(G) \leq \chi(G)$. Applying the Main Theorem, we conclude $\Delta(G) \leq \chi(G) \leq \frac{5}{6}(\Delta(G) + 1)$ and hence $\Delta(G) \leq 5$. But then $\theta(G) = 10$ and we must have $\chi(G) \geq 6$. Now applying Brooks’ Theorem gets the desired contradiction.

In fact, a similar proof shows that a whole spectrum of generalizations hold.

Definition 2. For $0 \leq \epsilon \leq 1$, define $\Delta_\epsilon(G)$ as

$$\left\lceil \max_{xy \in E(G)} (1 - \epsilon) \min\{d(x), d(y)\} + \epsilon \max\{d(x), d(y)\} \right\rceil.$$

Note that $\Delta_1 = \Delta$, $\Delta_{\frac{1}{2}} = \left\lceil \frac{\theta}{2} \right\rceil$ and $\Delta_0 = \Delta_2$.

Theorem 1. For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max \{\omega, \Delta_\epsilon\}$.

It would be interesting to determine, for each ϵ, the smallest t_ϵ that works in Theorem 1. In the final section we give a simple construction showing that $t_\epsilon \geq 1 + \frac{2}{\epsilon}$. The Main Theorem implies $t_\epsilon < \frac{6}{\epsilon}$.

2. REPHRASING THE PROBLEM

Definition 3. For a graph G and $r \geq 0$, let $G^{\geq r}$ be the subgraph of G induced on the vertices of degree at least r in G. Let $H(G) = G^{\geq \chi(G)}$.

We can rewrite the definition of Δ_2 as

$$\Delta_2(G) = \min \{r \geq 0 \mid G^{\geq r} \text{ is edgeless}\} - 1.$$

In particular we have the following.

Observation. For any graph G, $\chi(G) > \Delta_2(G)$ if and only if $H(G)$ is edgeless.

This observation will allow us to prove our upper bound without worrying about Δ_2.

3. PROVING THE BOUND

We will use part of an algorithm of Mozhan [4]. The following is a generalization of his main lemma.

Definition 4. Let G be a graph containing at least one critical vertex. Let $a \geq 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. By a (r_1, \ldots, r_a)-partitioned coloring of G we mean a proper coloring of G of the form

$$\{\{x\}, L_{11}, L_{12}, \ldots, L_{1r_1}, L_{21}, L_{22}, \ldots, L_{2r_2}, \ldots, L_{ar_a}, L_{a_1}, L_{a_2}, \ldots, L_{ar_a}\}.$$

Here $\{x\}$ is a singleton color class and each L_{ij} is a color class.
Lemma 2. Let G be a graph containing at least one critical vertex. Let $a \geq 1$ and r_1, \ldots, r_a be such that $1 + \sum_i r_i = \chi(G)$. Of all (r_1, \ldots, r_a)-partitioned colorings of G pick one (call it π) minimizing

$$\sum_{i=1}^a \left\| G \left[\bigcup_{j=1}^{r} L_{ij} \right] \right\| .$$

Remember that $\{x\}$ is a singleton color class in the coloring. Put $U_i = \bigcup_{j=1}^{r} L_{ij}$ and let $Z_i(x)$ be the component of x in $G[\{x\} \cup U_i]$. If $d_{Z_i(x)}(x) = r_i$, then $Z_i(x)$ is complete if $r_i \geq 3$ and $Z_i(x)$ is an odd cycle if $r_i = 2$.

Proof. Let $1 \leq i \leq a$ such that $d_{Z_i(x)}(x) = r_i$. Put $Z_i = Z_i(x)$.

First suppose that $\Delta(Z_i) > r_i$. Take $y \in V(Z_i)$ with $d_{Z_i}(y) > r_i$ closest to x and let $x_1x_2 \cdots x_t$ be a shortest $x - y$ path in Z_i. Plainly, for $k < t$, each x_k hits exactly one vertex in each color class besides its own. Thus we may recolor x_k with $\pi(x_{k+1})$ for $k < t$ and x_t with $\pi(x_1)$ to produce a new $\chi(G)$-coloring of G (this can be seen as a generalized Kempe chain). But we've moved a vertex (x_t) of degree $r_i + 1$ out of U_i while moving in a vertex (x_1) of degree r_i violating the minimality condition on π. This is a contradiction.

Thus $\Delta(Z_i) \leq r_i$. But $\chi(Z_i) = r_i + 1$, so Brooks’ Theorem implies that Z_i is complete if $r_i \geq 3$ and Z_i is an odd cycle if $r_i = 2$. \hfill \square

Definition 5. We call $v \in V(G)$ low if $d(v) = \chi(G) - 1$ and high otherwise.

Note that in Lemma 2, if $d_{Z_i(x)}(x) = r_i$ then we can swap x with any other $y \in Z_i(x)$ by changing π so that x is colored with $\pi(y)$ and y is colored with $\pi(x)$ to get another minimal $\chi(G)$-coloring of G.

Lemma 3. Assume the same setup as Lemma 2 and that x is low. If $i \neq j$ such that $r_i \geq r_j \geq 3$ and a low vertex $w \in U_i \cap N(x)$ is adjacent to a low vertex $z \in U_j \cap N(x)$, then the low vertices in $(U_i \cup U_j) \cap N(x)$ are all universal in $G[(U_i \cup U_j) \cap N(x)]$.

Proof. Suppose $i \neq j$ and a low vertex $w \in U_i \cap N(x)$ is adjacent to a low vertex $z \in U_j \cap N(x)$. Swap x with w to get a new minimal $\chi(G)$-coloring of G. Since w is low and adjacent to $z \in U_j \cap N(x)$, w is joined to $U_j \cap N(x)$ by Lemma 2. Similarly z is joined to $U_i \cap N(x)$. But now every low vertex in $U_i \cap N(x)$ is adjacent to the low vertex $z \in U_j \cap N(x)$ and is hence joined to $U_j \cap N(x)$. Similarly, every low vertex in $U_j \cap N(x)$ is joined to $U_i \cap N(x)$. Since both $U_i \cap N(x)$ and $U_j \cap N(x)$ induce cliques in G, the proof is complete. \hfill \square

Theorem 4. Fix $k \geq 2$ and let G be a vertex critical graph with $\chi(G) \geq \Delta(G) + 1 - k$. If $\Delta(G) + 1 \geq 6k$ and $\mathcal{H}(G)$ is edgeless then $G = K_{\chi(G)}$.

Proof. Suppose that $\Delta(G) + 1 \geq 6k$ and $\mathcal{H}(G)$ is edgeless. Since $\Delta(G) + 1 \geq 6k$ we have $\chi(G) \geq 5k$ and thus we can find r_1, \ldots, r_{k+1} such that $r_1, r_2 \geq k + 1$, $r_i \geq 3$ for each $i \geq 3$ and $\sum_{i=1}^{k+1} r_i = \chi(G) - 1$. Note that $r_i \geq 3$ for each i since $k \geq 2$.

Put $a = k + 1$. Of all (r_1, r_2, \ldots, r_a)-partitioned colorings of G, pick one (call it π) minimizing
\begin{align*}
\sum_{i=1}^{a} \left\| G \left[\bigcup_{j=1}^{r_i} L_{ij} \right] \right\| .
\end{align*}

Remember that \{x\} is a singleton color class in the coloring. Throughout the proof we refer to a coloring that minimizes the above function as a \textit{minimal} coloring. Put \(U_i = \bigcup_{j=1}^{r_i} L_{ij}\) and let \(C_i = \pi(U_i)\) (the colors used on \(U_i\)). For a minimal coloring \(\gamma\) of \(G\), let \(Z_{x,i}(x)\) be the component of \(x\) in \(G[\{x\} \cup \gamma^{-1}(C_i)]\). Note that \(Z_i(x) = Z_{x,i}(x)\).

First suppose \(x\) is high. Since \(a > k\) we have \(1 \leq i \leq a\) such that \(d_{Z_i(x)}(x) = r_i\). Thus \(Z_i(x)\) is complete. Since \(\mathcal{H}(G)\) is edgeless, each vertex in \(Z_i(x) - x\) must be low. Hence we can swap \(x\) with a low vertex in \(U_i\) to get another minimal \(\chi(G)\) coloring. Thus we may assume that \(x\) is low. Consider the following algorithm.

(1) Put \(q_0(y) = 0\) for each \(y \in V(G)\).
(2) Put \(x_0 = x\), \(\pi_0 = \pi\), \(p_0 = 1\) and \(i = 0\).
(3) Pick a low vertex \(x_{i+1} \in Z_{\pi_i, p_i}(x_i) - x_i\) minimizing \(q_i(x_{i+1})\). Swap \(x_{i+1}\) with \(x_i\). Let \(\pi_{i+1}\) be the resulting coloring.
(4) If there exists \(d \in \{3, \ldots, a\} - \{p_i\}\) with \(\left| V(Z_{\pi_{i+1}, d}(x_{i+1})) \right| \cap \bigcup_{j=1}^{i} x_j = 0\), then let \(p_{i+1} = d\). Otherwise pick \(p_{i+1} \in \{1, 2\} - \{p_i\}\).
(5) Put \(q_i(x_i) = q_i(x_{i+1}) + 1\).
(6) Put \(q_{i+1} = q_i\).
(7) Put \(i = i + 1\).
(8) Goto (3).

Since \(G\) is finite we have a smallest \(t\) such that for \(p = 1\) or \(p = 2\) with \(p \neq p_{t-1}\) we have \(\left| \{y \in V(Z_{\pi_t, p_t}(x_t)) - \{x_t\} \mid q_t(y) = 1\} \right| = k\). Let \(x_{t_1}, \ldots, x_{t_k}\) with \(t_1 < t_2 \cdots < t_k\) be the vertices in \(V(Z_{\pi_{t_1}, p_{t_1}}(x_{t_1})) - \{x_t\} \) with \(q_t(x_{t_1}) = 1\).

Swap \(x_t\) with \(x_{t_1}\) and note that \(x_{t_1}\) is low and adjacent to each of \(x_{t_1+1}, \ldots, x_{t_k+1}\). Also note that \(\{x_{t_1+1}, \ldots, x_{t_k+1}\}\) induces a clique in \(G\) since all those vertices are in \(U_p\). By the condition in step (4) we see that \(\{p_{t_1+1}, p_{t_2+1}, \ldots, p_{t_k+1}\} = \{1, \ldots, a\} - \{p\}\). Thus the low vertices in \(\bigcup_{i \neq p} \pi_t^{-1}(C_i) \cap N(x_{t_1})\) are universal in \(G\left[\bigcup_{i \neq p} \pi_t^{-1}(C_i) \cap N(x_{t_1}) \right]\) by Lemma 3. Also since \(x_{t_1}\) is low and is joined to \(\pi_t^{-1}(C_i) \cap N(x_{t_1})\) for each \(i \neq p\), again applying Lemma 3 we get that the low vertices in \(N(x_{t_1}) \cup \{x_{t_1}\}\) are universal in \(G[N(x_{t_1}) \cup \{x_{t_1}\}]\).

Put \(F = G[N(x_{t_1}) \cup \{x_{t_1}\}]\) and let \(S\) be the set of high vertices in \(F\). Note that \(|F| = \chi(G)|S| \leq k + 1\) since \(\mathcal{H}(G)\) is edgeless. We will show that \(F\) is complete. Since all the low vertices in \(F\) are universal in \(F\), it will suffice to show that \(|S| \leq 1\).

Suppose otherwise that we have different \(w, z \in S\). Then \(w\) and \(z\) are non-adjacent since \(H(G)\) is edgeless. Color \(G - F\) with \(\chi(G) - 1\) colors. This leaves a list assignment \(L\) on \(F\) with \(|L(v)| \geq d_F(v) - k\) for each \(v \in V(F)\). Thus \(|L(w)| + |L(z)| \geq d_F(w) + d_F(z) - 2k \geq 2(|F| - |S|) - 2k \geq 2(\Delta(G) - 2k) - 2k = 2\Delta(G) - 6k\). Since \(\Delta(G) + 1 \geq 6k\) and \(k \geq 2\), we have \(|L(w)| + |L(z)| \geq 2\Delta(G) - 6k \geq \Delta(G) + 1 - k\). Hence we have \(c \in L(w) \cap L(z)\). Color both \(w\) and \(z\) with \(c\) to get a new list assignment \(F' = F - \{w, z\}\). Put \(A = G[S - \{w, z\}]\). Then we can complete the coloring to \(A\) since for any \(v \in V(A)\) we have \(|L'(v)| \geq d_{F'}(v) - k \geq d_A(v) + |F| - |S| - k \geq d_A(v) + \Delta(G) - 3k \geq d_A(v) + 1\). Let \(J\) be the
resulting list assignment on \(B = F - S \). Since the vertices in \(B \) are all low and they each have a pair of neighbors that received the same color \((w \text{ and } z)\) we have \(|J(v)| \geq d_B(v) + 1 \) for each \(v \in V(B) \). Hence we can complete the \(\chi(G) - 1 \) coloring to all of \(F \). This is a contradiction.

The \(k = 1 \) case was dealt with in [5]. The proof is similar but complicated by having to deal with odd cycles instead of just cliques. There the following was proved.

Corollary 5. \(K_{\chi(G)} \) is the only critical graph \(G \) with \(\chi(G) \geq \Delta(G) \geq 6 \) such that \(\mathcal{H}(G) \) is edgeless.

Now the proof of the Main Theorem is almost immediate.

Proof of Main Theorem. Suppose the theorem is false and choose a counterexample \(G \) minimizing \(|G| \). Plainly, \(G \) is vertex critical. Let \(k = \Delta(G) + 1 - \chi(G) \). Note that \(k \geq 1 \) by Brooks' Theorem. Since \(\chi(G) > \Delta_2(G) \), we know by our observation above that \(\mathcal{H}(G) \) is edgeless. Also, since \(\chi(G) > \frac{5}{6}(\Delta(G) + 1) \) we have \(\Delta(G) + 1 - k = \chi(G) \geq 5k + 1 \). If \(k \geq 2 \) we have a contradiction by Theorem 4. If \(k = 1 \) we have a contradiction by Corollary 5. \(\square \)

4. A simple construction

Let \(F_n \) be the graph formed from the disjoint union of \(K_n - xy \) and \(K_{n-1} \) by joining \(\lfloor \frac{n-1}{2} \rfloor \) vertices of the \(K_{n-1} \) to \(x \) and the other \(\lceil \frac{n-1}{2} \rceil \) vertices of the \(K_{n-1} \) to \(y \). It is easily verified that for \(n \geq 4 \) we have \(\chi(F_n) = n > \omega(F_n) \), \(\Delta(F_n) = \lfloor \frac{n-1}{2} \rfloor + n - 2 \) and \(\mathcal{H}(G) \) is edgeless (and nonempty). Moreover, \(\Delta_\epsilon(F_n) = \lfloor (1 - \epsilon)(n - 1) + \epsilon \left(\left\lfloor \frac{n-1}{2} \right\rfloor + n - 2 \right) \rfloor = \lfloor n - 1 - \epsilon + \epsilon \left\lfloor \frac{n-1}{2} \right\rfloor \rfloor \). For \(0 < \epsilon \leq 1 \), choose \(n_\epsilon \in \mathbb{N} \) maximal such that \(\left\lfloor \frac{n_\epsilon}{2} \right\rfloor < 1 + \frac{1}{\epsilon} \). Then \(\Delta_\epsilon(F_{n_\epsilon}) = n_\epsilon - 1 \). Hence in Theorem 1, we must have \(t_\epsilon \geq n_\epsilon \). By maximality, \(n_\epsilon \) must be odd. Thus

\[
n_\epsilon = \begin{cases}
1 + 2 \left\lfloor \frac{1}{\epsilon} \right\rfloor & \text{if } \frac{1}{\epsilon} \in \mathbb{N} \\
3 + 2 \left\lfloor \frac{1}{\epsilon} \right\rfloor & \text{if } \frac{1}{\epsilon} \notin \mathbb{N}.
\end{cases}
\]

In particular, \(t_\epsilon \geq n_\epsilon \geq 1 + \frac{2}{\epsilon} \) for all \(0 < \epsilon \leq 1 \). Additionally, we see that \(t_0 \) does not exist; that is, the tempting thought is false.

References

