AN IMPROVEMENT ON BROOKS’ THEOREM
LANDON RABERN

ABSTRACT. We prove that x(G) < max {w(G), A2(G), 3(A(G) +1)} for every graph G
with A(G) > 3. Here Ay is the parameter introduced by Stacho that gives the largest
degree that a vertex v can have subject to the condition that v is adjacent to a vertex whose
degree is at least as large as its own. This upper bound generalizes both Brooks” Theorem
and the Ore-degree version of Brooks’” Theorem.

1. INTRODUCTION

Brooks’ Theorem [1] gives an upper bound on a graph’s chromatic number in terms of its
maximum degree and clique number.

Brooks’ Theorem. Every graph with A > 3 satisfies x < max{w, A}.

In [6] Stacho introduced the graph parameter A, as the largest degree that a vertex v
can have subject to the condition that v is adjacent to a vertex whose degree is at least
as large as its own. He proved that for any graph G, the bound x(G) < Ay(G) + 1 holds.
Moreover, he proved that for any fixed ¢ > 3, the problem of determining whether or not
X(G) < Ay(G) for graphs with Ay(G) =t is NP-complete. It is tempting to think that an
analogue of Brooks’ Theorem like the following holds for A,.

Tempting Thought. There exists t such that every graph with Ay > ¢ satisfies y < max{w, Ay}.

Unfortunately, using Lovész’s ¥ parameter [2] which can be computed in polynomial time

and has the property that w(G) < 9(G) < x(G) we see immediately that if P # NP, then the
tempting thought cannot hold for any . In the final section we give a construction showing
that this is indeed the case whether or not P # NP. However, if we limit how far from A+ 1
our upper bound can stray, we can get a generalization of Brooks” Theorem involving A,.

Main Theorem. Every graph with A > 3 satisfies
5
X < max {w, A, B(A + 1)} :

In addition to generalizing Brooks’ Theorem, this also generalizes the Ore-degree version
of Brooks’ Theorem as introduced by Kierstead and Kostochka in [3] and improved in [5].

Definition 1. The Ore-degree of an edge xy in a graph G is 0(zy) = d(z) + d(y). The
Ore-degree of a graph G is 0(G) = max,yecp(c) 0(vy).

Note that Ay < [gj < A. In [5] the following bound was proved. The graph Oj exhibited

in 3] shows that the # > 10 condition is best possible.
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Ore Version of Brooks’ Theorem. FEvery graph with 6 > 10 satisfies x < max {w, ng }

Proof. Suppose the theorem is false and choose a counterexample G minimizing |G|. Plainly,
G is vertex critical. Thus §(G) > x(G) — 1. In particular, 6(G) > §(G) + A(G) > x(G) +
A(G) — 1. Hence A(G) < x(G). Applying the Main Theorem, we conclude A(G) < x(G) <

2(A(G) 4 1) and hence A(G) < 5. But then #(G) = 10 and we must have x(G) > 6. Now

applying Brooks’ Theorem gets the desired contradiction. 0
In fact, a similar proof shows that a whole spectrum of generalizations hold.
Definition 2. For 0 < e <1, define A (G) as
Lyrggfqe)(l — ¢)min{d(z),d(y)} + e max{d(z), d(y)}J :
Note that A; = A, A% = [gJ and Ag = As.

Theorem 1. For every 0 < € < 1, there exists t. such that every graph with A. > t. satisfies

X < max{w, A.}.
It would be interesting to determine, for each €, the smallest t. that works in Theorem 1. In
the final section we give a simple construction showing that ¢, > 1+ % The Main Theorem
implies t. < g.
2. REPHRASING THE PROBLEM

Definition 3. For a graph G and r > 0, let G=" be the subgraph of G induced on the
vertices of degree at least r in G. Let H(G) = G=X(),

We can rewrite the definition of A, as
Ao(G) =min {r > 0| G is edgeless} — 1.
In particular we have the following.
Observation. For any graph G, x(G) > Ay(G) if and only if H(G) is edgeless.

This observation will allow us to prove our upper bound without worrying about A,.

3. PROVING THE BOUND

We will use part of an algorithm of Mozhan [4]. The following is a generalization of his
main lemma.

Definition 4. Let G be a graph containing at least one critical vertex. Let a > 1 and
T1,...,7q besuch that 14+ .1, = x(G). By a (11, ...,7,)-partitioned coloring of G we mean
a proper coloring of GG of the form

{{ZL‘}, L117L127 ey Llrla L217L227 v 7L27‘27 s 7La1a La27 ey Lara} .

Here {z} is a singleton color class and each L;; is a color class.
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Lemma 2. Let G be a graph containing at least one critical vertex. Leta > 1 and ri,...,7,
be such that 14+, 1, = x(G). Of all (r1,...,r,)-partitioned colorings of G pick one (call it
T ) minimizing

i=1

Remember that {x} is a singleton color class in the coloring. Put U; = \J;_, Lij and let Z;(x)
be the component of x in G[{x} UU;|. If dz,2)(x) = ri, then Z;i(x) is complete if r; > 3 and
Zi(x) is an odd cycle if r; = 2.

i1

Proof. Let 1 <'i < a such that dg,,)(z) = ;. Put Z; = Z;(x).

First suppose that A(Z;) > r;. Take y € V(Z;) with dgz (y) > r; closest to x and let
T1Ts9 - - - x4 be a shortest © — y path in Z;. Plainly, for k£ < ¢, each x; hits exactly one vertex
in each color class besides its own. Thus we may recolor zy with 7(zx, 1) for k < ¢ and z;
with 7(z1) to produce a new x(G)-coloring of G (this can be seen as a generalized Kempe
chain). But we’ve moved a vertex (x;) of degree r; + 1 out of U; while moving in a vertex
(1) of degree r; violating the minimality condition on 7. This is a contradiction.

Thus A(Z;) < r;. But x(Z;) = r; + 1, so Brooks’ Theorem implies that Z; is complete if
r; > 3 and Z; is an odd cycle if r; = 2. O

Definition 5. We call v € V(G) low if d(v) = x(G) — 1 and high otherwise.

Note that in Lemma 2, if dz, ) (x) = r; then we can swap x with any other y € Z;(z) by
changing 7 so that x is colored with m(y) and y is colored with 7(x) to get another minimal
X(G)-coloring of G.

Lemma 3. Assume the same setup as Lemma 2 and that x is low. If i # j such that
ri > 1r; >3 and a low vertex w € U; N N(x) is adjacent to a low vertex z € U; N N(x), then
the low vertices in (U; UU;) N N(x) are all universal in G[(U; U U;) N N(z)].

Proof. Suppose i # j and a low vertex w € U;NN(z) is adjacent to a low vertex z € U;NAN ().
Swap x with w to get a new minimal x(G)-coloring of G. Since w is low and adjacent to
z € UiN N(z), w is joined to U; N N(x) by Lemma 2. Similarly z is joined to U; N N(x).
But now every low vertex in U; N N(z) is adjacent to the low vertex z € U; N N(x) and is
hence joined to U; N N(z). Similarly, every low vertex in U; N N(z) is joined to U; N N(x).
Since both U; N N(z) and U; N N(x) induce cliques in G, the proof is complete. O

Theorem 4. Fiz k > 2 and let G be a vertex critical graph with x(G) > A(G) +1 — k. If
A(G) 4+ 1 > 6k and H(G) is edgeless then G = K,(a).

Proof. Suppose that A(G) + 1 > 6k and H(G) is edgeless. Since A(G) + 1 > 6k we have
X(G) > 5k and thus we can find r4,...,rg; such that ri,79 > k+ 1, r; > 3 for each i > 3
and Zf;l r; = X(G) — 1. Note that r; > 3 for each i since k > 2.

Put @ = k+ 1. Of all (ry,79,...,7,)-partitioned colorings of G, pick one (call it =)
minimizing
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Remember that {2} is a singleton color class in the coloring. Throughout the proof we refer
to a coloring that minimizes the above function as a minimal coloring. Put U; = U;’:l L;;
and let C; = m(U;) (the colors used on U;). For a minimal coloring v of G, let Z, ;(x) be the
component of z in G[{x} Uy~1(C;)]. Note that Z;(x) = Z,;(z).

First suppose x is high. Since a > k we have 1 <4 < a such that dz,)(x) = r;. Thus
Z;(x) is complete. Since H(G) is edgeless, each vertex in Z;(x) — z must be low. Hence we
can swap = with a low vertex in U; to get another minimal x(G) coloring. Thus we may
assume that x is low. Consider the following algorithm.

(1) Put go(y) = 0 for each y € V(G).

(2) Put xg =2, mp =7, pp = 1 and i = 0.

(3) Pick a low vertex ;41 € Zy, p,(x;) — x; minimizing ¢;(z;41). Swap x;41 with z;. Let
m;+1 be the resulting coloring.

(4) If there exists d € {3,...,a} — {p;} with ‘V(Zﬂi+17d(xi+1)) NUj—; ;| = 0, then let
pit1 = d. Otherwise pick p;+1 € {1,2} — {p;}.

(5) Put g;(2;) = gi(wit1) + 1.
(6) Put giy1 = g

(7) Put i =+ 1.

(8) Goto (3).

Since G is finite we have a smallest ¢ such that for p = 1 or p = 2 with p # p;_1 we
have [{y € V(Zx, p(x1)) —{zt} | @e(y) = 1}| = k. Let @y, ..., 2y, with t; < ty--- < ) be the
vertices in V/(Zx, p(2¢)) — {2:} with g;(z;) = 1.

Swap z; with z;, and note that x;, is low and adjacent to each of x4 41,...,2441. Also
note that {xy4+1,...,2+1} induces a clique in G since all those vertices are in U,. By the
condition in step (4) we see that {ps,+1,Pry41s - Pter1; = {1,...,a} — {p}. Thus the low

vertices in {J,, 7, 1(C;) N N(xy,) are universal in G [U#p 7, N (C) N N(xtl)} by Lemma 3.

Also since z; is low and is joined to 7, 1(C;) N N(zy,) for each i # p, again applying Lemma
3 we get that the low vertices in N(xy,) U {x¢, } are universal in G[N (z¢,) U {4, }].

Put F' = G[N(xy,)U{z¢, }] and let S be the set of high vertices in F. Note that |F| = x(G)
and |S| < k + 1 since H(G) is edgeless. We will show that F' is complete. Since all the low
vertices in F' are universal in F', it will suffice to show that |S| < 1.

Suppose otherwise that we have different w, z € S. Then w and z are non-adjacent since
H(G) is edgeless. Color G — F with x(G) — 1 colors. This leaves a list assignment L on F
with |L(v)| > dp(v) — k for each v € V(F'). Thus |L(w)| + |L(2)| > dp(w) + dp(z) — 2k >
2(|F| = |S]) — 2k > 2(A(G) — 2k) — 2k = 2A(G) — 6k. Since A(G) +1 > 6k and k > 2,
we have |L(w)| + |L(z)| > 2A(G) — 6k > A(G) + 1 — k. Hence we have ¢ € L(w) N L(z).
Color both w and z with ¢ to get a new list assignment L' on F' = F — {w,z}. Put
A = G[S — {w, z}|. Then we can complete the coloring to A since for any v € V(A) we have
|L'(v)| > dp(v) —k > da(v) +|F|—|S| =k > da(v)+ A(G) — 3k > da(v) + 1. Let J be the
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resulting list assignment on B = F' — S. Since the vertices in B are all low and they each
have a pair of neighbors that received the same color (w and z) we have |J(v)| > dg(v) + 1
for each v € V(B). Hence we can complete the y(G) — 1 coloring to all of F. This is a
contradiction. U

The k = 1 case was dealt with in [5]. The proof is similar but complicated by having to
deal with odd cycles instead of just cliques. There the following was proved.

Corollary 5. K, () is the only critical graph G with x(G) > A(G) > 6 such that H(G) is
edgeless.

Now the proof of the Main Theorem is almost immediate.

Proof of Main Theorem. Suppose the theorem is false and choose a counterexample G' min-
imizing |G|. Plainly, G is vertex critical. Let & = A(G) + 1 — x(G). Note that £ > 1 by
Brooks’ Theorem. Since x(G) > Ay(G), we know by our observation above that H(G) is
edgeless. Also, since x(G) > 2(A(G) + 1) we have A(G) +1—k = x(G) > 5k +1. If k> 2
we have a contradiction by Theorem 4. If £ = 1 we have a contradiction by Corollary 5. [

4. A SIMPLE CONSTRUCTION

Let F,, be the graph formed from the disjoint union of K,, — xy and K,,_; by joining
VT_lJ vertices of the K,,_; to = and the other (”T_lw vertices of the K,,_; to y. It is easily
verified that for n > 4 we have x(F,) = n > w(F,), A(F,) = [%1] + n — 2 and H(G)
is edgeless (and nonempty). Moreover, A (F,) = |[(1—€)(n—1)+€([2L] +n—2)] =
Ln —1—€e+e ’—”T_I-H For 0 < € < 1, choose n. € N maximal such that ’—”67_11 <1+ %
Then A (F,.) = n.— 1. Hence in Theorem 1, we must have t. > n.. By maximality, n. must

be odd. Thus

1+2 if L eN
Ne = .
3+2[L] ifigN
In particular, t. > n. > 1+ % for all 0 < € < 1. Additionally, we see that ¢ty does not exist;
that is, the tempting thought is false.
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