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Abstract

Borodin and Kostochka conjectured that every graph G with maximum degree
∆ ≥ 9 satisfies χ ≤ max {ω,∆− 1}. We carry out an in-depth study of minimum
counterexamples to the Borodin-Kostochka conjecture. Our main tool is the classi-
fication of graph joins A ∗B with |A| ≥ 2, |B| ≥ 2 which are f -choosable, where
f(v) := d(v)− 1 for each vertex v. Since such a join cannot be an induced subgraph of
a vertex critical graph with χ = ∆, we have a wealth of structural information about
minimum counterexamples to the Borodin-Kostochka conjecture.

Our main result proves that certain conjectures that are prima facie weaker than
the Borodin-Kostochka conjecture are in fact equivalent to it. One such equivalent
conjecture is the following: Any graph with χ ≥ ∆ = 9 contains K3 ∗E6 as a subgraph.

1 Introduction

1.1 A short history of the problem

The first non-trivial result about coloring graphs with around ∆ colors is Brooks’ theorem
from 1941.

Theorem 1.1 (Brooks [4]). Every graph with ∆ ≥ 3 satisfies χ ≤ max{ω,∆}.

In 1977, Borodin and Kostochka conjectured that a similar result holds for ∆−1 colorings.
Counterexamples exist showing that the ∆ ≥ 9 condition is tight (see Figures 1, 2, 3 and 4).

Conjecture 1.2 (Borodin and Kostochka [3]). Every graph with ∆ ≥ 9 satisfies χ ≤
max{ω,∆− 1}.

In the same paper they proved the following weakening. The proof is quite simple once
you have a decomposition lemma of Lovász from the 1960’s [12].
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Theorem 1.3 (Borodin and Kostochka [3]). Every graph satisfying χ ≥ ∆ ≥ 7 contains a
Kb∆+1

2 c.

In the 1980’s, Kostochka proved the following using a complicated recoloring argument
together with a technique for reducing ∆ in a counterexample based on hitting every maxi-
mum clique with an independent set.

Theorem 1.4 (Kostochka [10]). Every graph satisfying χ ≥ ∆ contains a K∆−28.

Kostochka [10] proved the following result which shows that graphs having clique number
sufficiently close to their maximum degree contain an independent set hitting every maximum
clique. In [14] the second author improved the antecedent to ω ≥ 3

4
(∆ + 1). Finally, King

[9] made the result tight.

Lemma 1.5 (Kostochka [10]). If G is a graph satisfying ω ≥ ∆ + 3
2
−
√

∆, then G contains
an independent set I such that ω(G− I) < ω(G).

Lemma 1.6 (Rabern [14]). If G is a graph satisfying ω ≥ 3
4
(∆ + 1), then G contains an

independent set I such that ω(G− I) < ω(G).

Lemma 1.7 (King [9]). If G is a graph satisfying ω > 2
3
(∆ + 1), then G contains an

independent set I such that ω(G− I) < ω(G).

If G is a vertex critical graph satisfying ω > 2
3
(∆+1) and we expand the independent set

I produced by Lemma 1.7 to a maximal independent set M and remove M from G, we see
that ∆(G−M) ≤ ∆(G)− 1, χ(G−M) = χ(G)− 1, and ω(G−M) = ω(G)− 1. Using this,
the proof of many coloring results can be reduced to the case of the smallest ∆ for which
they work. In the case of graphs with χ = ∆, we get the following general result.

Definition 1. For k, j ∈ N, let Ck,j be the collection of all vertex critical graphs satisfying
χ = ∆ = k and ω < k − j. Put Ck := Ck,0. Note that Ck,j ⊆ Ck,i for j ≥ i.

For each k ≥ 9, Ck is precisely the set of counterexamples to the Borodin-Kostochka
conjecture with ∆ = k.

Lemma 1.8. Fix k, j ∈ N with k ≥ 3j + 6. If G ∈ Ck,j, then there exists H ∈ Ck−1,j such
that H CG.

Proof. Let G ∈ Ck,j. We first show that there exists a maximal independent set M such that
ω(G−M) < k − (j + 1). If ω(G) < k − (j + 1), then any maximal independent set will do
for M . Otherwise, ω(G) = k − (j + 1). Since k ≥ 3j + 6, we have ω(G) = k − (j + 1) >
2
3
(k + 1) = 2

3
(∆(G) + 1). Thus by Lemma 1.7, we have an independent set I such that

ω(G− I) < ω(G). Expand I to a maximal independent set to get M .
Now χ(G − M) = k − 1 = ∆(G − M), where the last equality follows from Brooks’

theorem and ω(G −M) < k − (j + 1) ≤ k − 1. Since ω(G −M) < k − (j + 1), for any
(k − 1)-critical induced subgraph H EG−M we have H ∈ Ck−1,j.

As a consequence we get the following result of Kostochka that the Borodin-Kostochka
conjecture can be reduced to the case when ∆ = k = 9.
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Lemma 1.9. Let H be a hereditary graph property. For k ≥ 5, if H ∩ Ck = ∅, then
H∩Ck+1 = ∅. In particular, to prove the Borodin-Kostochka conjecture it is enough to show
that C9 = ∅.

A little while after Kostochka proved his bound, Mozhan [13] proved the following using
a different technique.

Theorem 1.10 (Mozhan [13]). Every graph satisfying χ ≥ ∆ ≥ 10 contains a Kb 2∆+1
3 c.

In his dissertation Mozhan improved on this result. We don’t know the method of proof
as we were unable to obtain a copy of his dissertation. However, we suspect the method is
a more complicated version of the proof of Theorem 1.10.

Theorem 1.11 (Mozhan). Every graph satisfying χ ≥ ∆ ≥ 31 contains a K∆−3.

In 1999, Reed used probabilistic methods to prove that the Borodin-Kostochka conjecture
holds for graphs with very large maximum degree.

Theorem 1.12 (Reed [15]). Every graph satisfying χ ≥ ∆ ≥ 1014 contains a K∆.

A lemma from Reed’s proof of the above theorem is generally useful.

Lemma 1.13 (Reed [15]). Let G be a vertex critical graph satisfying χ = ∆ ≥ 9 having the
minimum number of vertices. If H is a K∆−1 in G, then any vertex in G−H has at most
4 neighbors in H. In particular, the K∆−1’s in G are pairwise disjoint.

1.2 Our contribution

We carry out an in-depth study of minimum counterexamples to the Borodin-Kostochka
conjecture. Our main tool is the classification, in Section 4, of graph joins A ∗B with
|A| ≥ 2, |B| ≥ 2 which are f -choosable, where f(v) := d(v) − 1 for each vertex v. Since
such a join cannot be an induced subgraph of a vertex critical graph with χ = ∆, we
have a wealth of structural information about minimum counterexamples to the Borodin-
Kostochka conjecture. In Section 2, we exploit this information and minimality to improve
Reed’s Lemma 1.13 as follows (see Corollary 2.11).

Lemma 1.14. Let G be a vertex critical graph satisfying χ = ∆ ≥ 9 having the minimum
number of vertices. If H is a K∆−1 in G, then any vertex in G−H has at most 1 neighbor
in H.

Moreover, we lift the result out of the context of a minimum counterexample to the
Borodin-Kostochka conjecture, to the more general context of graphs satisfying a certain
criticality condition—we call such graphs mules. This allows us to prove meaningful results
for values of ∆ less than 9.

Let Kt and Et be the complete and edgeless graphs on t vertices, respectively. Since a
graph containing K∆ as a subgraph also contains Kt,∆−t as a subgraph for any t ∈ [∆− 1],
the Borodin-Kostochka conjecture implies the following conjecture. Our main result is that
the two conjectures are equivalent.

3



Conjecture 1.15. Any graph with χ = ∆ ≥ 9 contains some A1 ∗A2 as an induced subgraph
where |A1| , |A2| ≥ 3, |A1|+ |A2| = ∆ and Ai 6= K1 +K|Ai|−1 for some i ∈ [2].

In fact, using Kostochka’s reduction (Lemma 1.9) to the case ∆ = 9, the following
conjecture is also equivalent.

Conjecture 1.16. Any graph with χ = ∆ = 9 contains some A1 ∗A2 as an induced subgraph
where |A1| , |A2| ≥ 3, |A1|+ |A2| = 9 and Ai 6= K1 +K|Ai|−1 for some i ∈ [2].

As a special case, we get a couple more palatable equivalent conjectures (see Lemma 2.18
and the comment following it).

Conjecture 1.17. Any graph with χ = ∆ ≥ 9 contains K3 ∗E∆−3 as a subgraph.

Conjecture 1.18. Any graph with χ = ∆ = 9 contains K3 ∗E6 as a subgraph.

The condition Ai 6= K1 +K|Ai|−1 is unnatural and by removing it we get a (possibly)
weaker conjecture than the Borodin-Kostochka conjecture which has more aesthetic appeal.

Conjecture 1.19. Let G be a graph with ∆(G) = k ≥ 9. If Kt,k−t 6⊆ G for all 3 ≤ t ≤ k−3,
then G can be (k − 1)-colored.

Conjecture 1.20. Conjecture 1.19 is equivalent to the Borodin-Kostochka conjecture.

Perhaps it would be easier to attack Conjecture 1.19 with 3 ≤ t ≤ k − 3 replaced by
2 ≤ t ≤ k−2? We are unable to prove even this conjecture. Making this change and bringing
k down to 5 gives the following conjecture, which, if true, would imply the remaining two
cases of Grünbaum’s girth problem for graphs with girth at least five.

Conjecture 1.21. Let G be a graph with ∆(G) = k ≥ 5. If Kt,k−t 6⊆ G for all 2 ≤ t ≤ k−2,
then G can be (k − 1)-colored.

If G is a graph with with ∆(G) = k ≥ 5 and girth at least five, then it contains no
Kt,k−t for all 2 ≤ t ≤ k − 2 and hence Conjecture 1.21 would give a (k − 1)-coloring. This
conjecture would be tight since the Grünbaum graph and the Brinkmann graph are examples
with χ = ∆ = 4 and girth at least five.

Finally, we prove that the following conjecture is equivalent to the Borodin-Kostochka
conjecture for graphs with independence number at most 6 (see Theorem 2.24).

Conjecture 1.22. Every graph satisfying χ = ∆ = 9 and α ≤ 6 contains a K8.

2 Mules

In this section we exclude more induced subgraphs in a minimum counterexample to the
Borodin-Kostochka conjecture than we can exclude purely using list coloring properties. In
fact, we lift these results out of the context of a minimum counterexample to graphs satisfying
a certain criticality condition defined in terms of the following ordering.
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Definition 2. If G and H are graphs, an epimorphism is a graph homomorphism f : G� H
such that f(V (G)) = V (H). We indicate this with the arrow �.

Definition 3. Let G be a graph. A graph A is called a child of G if A 6= G and there exists
H EG and an epimorphism f : H � A.

Note that the child-of relation is a strict partial order on the set of (finite simple) graphs
G. We call this the child order on G and denote it by ‘≺’. By definition, if H C G then
H ≺ G.

Lemma 2.1. The ordering ≺ is well-founded on G; that is, every nonempty subset of G has
a minimal element under ≺.

Proof. Let T be a nonempty subset of G. Pick G ∈ T minimizing |G| and then maximizing
‖G‖. Since any child of G must have fewer vertices or more edges (or both), we see that G
is minimal in T with respect to ≺.

Definition 4. Let T be a collection of graphs. A minimal graph in T under the child order
is called a T -mule.

With the definition of mule we have captured the important properties (for coloring) of a
counterexample first minimizing the number of vertices and then maximizing the number of
edges. Viewing T as a set of counterexamples, we can add edges to or contract independent
sets in induced subgraphs of a T -mule and get a non-counterexample. We could do the
same with a minimal counterexample, but with mules we have more minimal objects to
work with. One striking consequence of this is that many of our proofs naturally construct
multiple counterexamples to Borodin-Kostochka for small ∆.

2.1 Excluding induced subgraphs in mules

Our main goal in this section is to prove Lemma 2.12, which says that (with only one excep-
tion) for k ≥ 7, no k-mule contains K4 ∗Ek−4 as a subgraph. This result immediately implies
that the Borodin-Kostochka Conjecture is equivalent to Conjecture 2.13. This equivalence is
a major step toward our main result. Our approach is based on Lemma 4.30, which implies
that if G is a counterexample to Lemma 2.12, then the vertices of the Ek−4 induce either E3,
a claw, a clique, or an almost complete graph. Our job in this section consists of showing
that each of these four possibilities is, in fact, impossible. Ruling out the clique is easy. The
cases of E3 and the claw are handled in Lemma 2.8, and the case of an almost complete
graph (which requires the most work) is handled by Corollary 2.11.

For k ∈ N, by a k-mule we mean a Ck-mule.

Lemma 2.2. Let G be a k-mule with k ≥ 4. If A is a child of G with ∆(A) ≤ k then either

• A is (k − 1)-colorable; or,

• A contains a Kk.
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Proof. Let A be a child of G with ∆(A) ≤ k, H E G and f : H � A an epimorphism.
Without loss of generality, A is vertex critical. Suppose A is not (k − 1)-colorable. Then
χ(A) ≥ k ≥ ∆(A). Since A ≺ G and G is a mule, A 6∈ Ck. Thus we have χ(A) > ∆(A) ≥ 3,
so Brooks’ theorem implies that A = Kk.

Note that adding edges to a graph yields an epimorphism.

Lemma 2.3. Let G be a k-mule with k ≥ 4 and H EG. Assume x, y ∈ V (H), xy 6∈ E(H)
and both dH(x) ≤ k − 1 and dH(y) ≤ k − 1. If for every (k − 1)-coloring π of H we have
π(x) = π(y), then H contains {x, y} ∗Kk−2.

Proof. Suppose that for every (k − 1)-coloring π of H we have π(x) = π(y). Using the
inclusion epimorphism fxy : H � H + xy in Lemma 2.2 shows that either H + xy is (k− 1)-
colorable or H + xy contains a Kk. Since a (k − 1)-coloring of H + xy would induce a
(k − 1)-coloring of H with x and y colored differently, we conclude that H + xy contains a
Kk. But then H contains {x, y} ∗Kk−2 and the proof is complete.

We will often begin by coloring some subgraph H of our graph G, and work to extend
this partial coloring. More formally, let G be a graph and H CG. For t ≥ χ(H), let π be a
proper t-coloring of H. For each x ∈ V (G−H), put Lπ(x) := {1, . . . , t}−

⋃
y∈N(x)∩V (H) π(y).

Then π is completable to a t-coloring of G iff Lπ admits a coloring of G − H. We will use
this fact repeatedly in the proofs that follow. The following generalizes a lemma due to Reed
[15], the proof is essentially the same.

Lemma 2.4. For k ≥ 6, if a k-mule G contains an induced E2 ∗Kk−2, then G contains an
induced E3 ∗Kk−2.

Proof. Suppose G is a k-mule containing an induced E2 ∗Kk−2, call it F . Let x, y be the
vertices of degree k − 2 in F and C := {w1, . . . , wk−2} the vertices of degree k − 1 in F .
Put H := G − F . Since G is vertex critical, we may k − 1 color H. Doing so leaves a
list assignment L on F with |L(z)| ≥ dF (z) − 1 for each z ∈ V (F ). Now |L(x)| + |L(y)| ≥
dF (x)+dF (y)−2 = 2k−6 > k−1 since k ≥ 6. Hence we have c ∈ L(x)∩L(y). Coloring both
x and y with c leaves a list assignment L′ on C with |L′(wi)| ≥ k− 3 for each 1 ≤ i ≤ k− 2.
Now, if |L′(wi)| ≥ k − 2 or L′(wi) 6= L′(wj) for some i, j, then we can complete the partial
(k − 1)-coloring to all of G using Hall’s Theorem. Hence we must have d(wi) = k and
L′(wi) = L′(wj) for all i, j. Let N :=

⋃
w∈C N(w)∩V (H) and note that N is an independent

set since it is contained in a single color class in every (k − 1)-coloring of H. Also, each
w ∈ C has exactly one neighbor in N .

Proving that |N | = 1 will give the desired E3 ∗Kk−2 in G. Thus, to reach a contradiction,
suppose that |N | ≥ 2.

We know that H has no (k − 1)-coloring in which two vertices of N get different colors
since then we could complete the partial coloring as above. Let v1, v2 ∈ N be different.
Since both v1 and v2 have a neighbor in F , we may apply Lemma 2.3 to conlcude that
{v1, v2} ∗Kv1,v2 is in H, where Kv1,v2 is a Kk−2.

First, suppose |N | ≥ 3, say N = {v1, v2, v3}. We have z ∈ Kv1,v2 ∩Kv1,v3 for otherwise
d(v1) ≥ 2(k − 2) > k. Since z already has k neighbors among Kv1,v2 − {z} and v1, v2, v3, we
must have Kv1,v3 = Kv1,v2 . But then {v1, v2, v3}+Kv1,v2 is our desired E3 ∗Kk−2 in G.
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Hence we must have |N | = 2, say N = {v1, v2}. For i ∈ [2], vi has k − 2 neighbors in
Kv1,v2 and thus at most two neighbors in C. Hence |C| ≤ 4. Thus we must have k = 6.

We may apply the same reasoning to {v1, v2} ∗Kv1,v2 that we did to F to get ver-
tices v2,1, v2,2 such that {v2,1, v2,2} ∗Kv2,1,v2,2 is in G. But then we may do it again with
{v2,1, v2,2} ∗Kv2,1,v2,2 and so on. Since G is finite, at some point this process must terminate.
But the only way to terminate is to come back around and use x and y. This graph is 5-
colorable since we may color all the E2’s with the same color and then 4-color the remaining
K4 components. This final contradiction completes the proof.

Figure 1: The mule M6,1.

Figure 2: The mule M7,1.

Lemma 2.5. For k ≥ 6, the only k-mules containing an induced E2 ∗Kk−2 are M6,1 and
M7,1.

Proof. Suppose we have a k-mule G that contains an induced E2 ∗Kk−2. Then by Lemma
2.4, G contains an induced E3 ∗Kk−2, call it F .

Let x, y, z be the vertices of degree k−2 in F and let C := {w1, . . . , wk−2} be the vertices
of degree k in F . Put H := G − C. Since each of x, y, z have degree at most 2 in H
and G is a mule, the homomorphism from H sending x, y, and z to the same vertex must
produce a Kk. Thus we must have k ≤ 7 and H contains a Kk−1 (call it D) such that
V (D) ⊆ N(x) ∪ N(y) ∪ N(z)). Put A := G [V (F ) ∪ V (D)]. Then A is k-chromatic and as
G is a mule, we must have G = A. If k = 7, then G = M7,1. Suppose k = 6 and G 6= M6,1.
Then one of x, y, or z has only one neighbor in D. By symmetry we may assume it is x.
But we can add an edge from x to a vertex in D to form M6,1 and hence G has a proper
child, which is impossible.
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Lemma 2.6. Let G be a k-mule with k ≥ 6 other than M6,1 and M7,1 and let H C G. If
x, y ∈ V (H) and both dH(x) ≤ k− 1 and dH(y) ≤ k− 1, then there exists a (k− 1)-coloring
π of H such that π(x) 6= π(y).

Proof. Suppose x, y ∈ V (H) and both dH(x) ≤ k−1 and dH(y) ≤ k−1. First, if xy ∈ E(H)
then any (k − 1)-coloring of H will do. Otherwise, if for every (k − 1)-coloring π of H we
have π(x) = π(y), then by Lemma 2.3, H contains {x, y} ∗Kk−2. The lemma follows since
this is impossible by Lemma 2.5.

Lemma 2.7. Let G be a k-mule with k ≥ 6 other than M6,1 and M7,1 and let F C G. Put
C := {v ∈ V (F ) | d(v)− dF (v) ≤ 1}. At least one of the following holds:

• G − F has a (k − 1)-coloring π such that for some x, y ∈ C we have Lπ(x) 6= Lπ(y);
or,

• G− F has a (k− 1)-coloring π such that for some x ∈ C we have |Lπ(x)| = k− 1; or,

• there exists z ∈ V (G− F ) such that C ⊆ N(z).

Proof. PutH := G−F . Suppose that for every (k−1)-coloring π ofH we have Lπ(x) = Lπ(y)
for every x, y ∈ C. By assumption, the vertices in C have at most one neighbor in H. If some
v ∈ C has no neighbors in H, then for any (k − 1)-coloring π of H we have |Lπ(v)| = k − 1.
Thus we may assume that every v ∈ C has exactly one neighbor in H.

Let N :=
⋃
w∈C N(w) ∩ V (H). Suppose |N | ≥ 2. Pick different z1, z2 ∈ N . Then, by

Lemma 2.6, there is a (k − 1)-coloring π of H for which π(z1) 6= π(z2). But then Lπ(x) 6=
Lπ(y) for some x, y ∈ C giving a contradiction. Hence N = {z} and thus C ⊆ N(z).

By Lemma 4.24, no graph in Ck contains an induced E3 ∗Kk−3 for k ≥ 9. For mules, we
can improve this as follows.

Lemma 2.8. For k ≥ 7, the only k-mule containing an induced E3 ∗Kk−3 is M7,1.

Proof. Suppose the lemma is false and let G be a k-mule, other than M7,1, containing such
an induced subgraph F . Let z1, z2, z3 ∈ F be the vertices with degree k − 3 in F and C the
rest of the vertices in F (all of degree k − 1 in F ). Put H := G− F .

First suppose there is not a vertex x ∈ V (H) which is adjacent to all of C. Let π be a
(k − 1)-coloring of H guaranteed by Lemma 2.7 and put L := Lπ. Since |L(z1)|+ |L(z2)|+
|L(z3)| ≥ 3(k − 4) > k − 1 we have 1 ≤ i < j ≤ 3 such that L(zi) ∩ L(zj) 6= ∅. Without loss
of generality, i = 1 and j = 2. Pick c ∈ L(z1) ∩ L(z2) and color both z1 and z2 with c. Let
L′ be the resulting list assignment on F −{z1, z2}. Now |L′(z3)| ≥ k− 4 and |L′(v)| ≥ k− 3
for each v ∈ C. By our choice of π, either two of the lists in C differ or for some v ∈ C
we have |L′(v)| ≥ k − 2. In either case, we can complete the (k − 1)-coloring to all of G by
Hall’s Theorem.

Hence we must have x ∈ V (H) which is adjacent to all of C. Thus G contains the induced
subgraph Kk−3 ∗G[z1, z2, z3, x]. Therefore k = 7 and x is adjacent to each of z1, z2, z3 by
Lemma 4.30. Hence G contains the induced subgraph K5 ∗E3 contradicting Lemma 2.5.

Lemma 2.9. For k ≥ 7, no k-mule contains an induced P3 ∗Kk−3.
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Proof. Suppose the lemma is false and letG be a k-mule containing such an induced subgraph
F . Note that M7,1 has no induced P3 ∗Kk−3, so G 6= M7,1. Let z ∈ V (F ) be the vertex with
degree k− 3 in F , v1, v2 ∈ F the vertices of degree k− 2 in F and C the rest of the vertices
in F (all of degree k − 1 in F ). Put H := G− F .

First suppose there is not a vertex x ∈ V (H) which is adjacent to all of C. Let π
be a (k − 1)-coloring of H guaranteed by Lemma 2.7 and put L := Lπ. Then, we have
|L(z)| ≥ k − 4 and |L(v1)| ≥ k − 3. Since k ≥ 7, |L(z)| + |L(v1)| ≥ 2k − 7 > k − 1. Hence,
by Lemma 4.7, we may color z and v1 the same. Let L′ be the resulting list assignment on
F − {z, v1}. Now |L′(v2)| ≥ k − 4 and |L′(v)| ≥ k − 3 for each v ∈ C. By our choice of π,
either two of the lists in C differ or for some v ∈ C we have |L′(v)| ≥ k − 2. In either case,
we can complete the (k − 1)-coloring to all of G by Hall’s Theorem.

Hence we must have x ∈ V (H) which is adjacent to all of C. Thus G contains the induced
subgraph K4 ∗G[z, v1, v2, x]. By Lemma 4.30, G[z, v1, v2, x] must be almost complete and
hence x must be adjacent to both v1 and v2. But then G[v1, v2, x] ∗C is a Kk in G, giving a
contradiction.

Reed proved that for k ≥ 9, a vertex outside a (k − 1)-clique H in a k-mule can have at
most 4 neighbors in H. We improve this to at most one neighbor.

Figure 3: The mule M7,2.

Lemma 2.10. For k ≥ 7 and r ≥ 2, no k-mule except M7,1 and M7,2 contains an induced
Kr ∗

(
K1 +Kk−(r+1)

)
.

Proof. Suppose the lemma is false and let G be a k-mule, other than M7,1 and M7,2, con-
taining such an induced subgraph F with r maximal. By Lemma 2.5 and Lemma 2.9, the
lemma holds for r ≥ k − 3. So we have r ≤ k − 4. Now, let z ∈ V (F ) be the vertex with
degree r in F , v1, v2, . . . , vk−(r+1) ∈ V (F ) the vertices of degree k− 2 in F and C the rest of
the vertices in F (all of degree k − 1 in F ). Put H := G− F .

Let Z1 := {za | a ∈ N(v1) ∩ V (H)}. Consider the graph D := H + z + Z1. Since v1 has
at most two neighbors in H, |Z1| ≤ 2 and thus to form D from H+ z, we added E(A) where
A ∈ {K1, K2, P3}. Since |C| ≥ 2, ∆(D) ≤ k. Hence Lemma 2.2 shows that H + z contains
a Kk −E(A) or χ(D) ≤ k − 1. Suppose χ(D) ≥ k. If A = K1, A = K2, or A = P3, then we
have a contradiction by the fact that ω(G) < k, Lemma 2.5, and Lemma 2.9, respectively.
Thus we must have χ(D) ≤ k−1, which gives a (k−1)-coloring of H+ z in which z receives
a color c which is not received by any of the neighbors of v1 in H. Thus c remains in the
list of v1 and we may color v1 with c. After doing so, each vertex in C has a list of size
at least k − 3 and vi for i > 1 has a list of size at least k − 4. If any pair of vertices in
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C had different lists, then we could complete the partial coloring by Hall’s Theorem. Let
N :=

⋃
w∈C N(w) ∩ V (H) and note that N is an independent set since it is contained in a

single color class in the (k − 1)-coloring of H just constructed.
Suppose |N | ≥ 2. Pick a1, a2 ∈ N . Consider the graph D := H + z +Z1 + a1a2. Plainly,

∆(D) ≤ k. To form D from H+ z we added E(A), where A ∈ {K1, K2, P3, K3, P4, K2 +P3}.
Hence Lemma 2.2 shows that H + z contains a Kk − E(A) or χ(D) ≤ k − 1. If χ(D) ≥ k,
then we have a contradiction since A = K1, A = K2, and A = P3 are impossible as above.
To show that A = K3, A = P4, and A = K2 +P3 are impossible, we apply Lemma 2.8 (this
is where we use the fact that G 6= M7,1), Lemma 4.32 (since Kt − E(P4) = P4 ∗Kt−4), and
Lemma 4.27, respectively.

Thus we must have χ(D) ≤ k − 1, which gives a (k − 1)-coloring of H + z in which a1

and a2 are in different color classes and z receives a color not received by any neighbor of v1

in H. As above we can complete this partial coloring to all of G by first coloring z and v1

the same and then using Hall’s Theorem.
Hence there is a vertex x ∈ V (H) which is adjacent to all of C. Note that x is not adjacent

to any of v1, v2, . . . , vk−(r+1) by the maximality of r. Let Z2 := {xa | a ∈ N(v2) ∩ V (H)}.
Consider the graph D := H + z + Z1 + Z2. As above, both Z1 and Z2 have cardinality at
most 2. Since |C| ≥ 2, both x and z have degree at most k in D. Since both xa and za were
added only if a was a neighbor of both v1 and v2, all the neighbors of v1 in H have degree
at most k in D. Similarly for v2’s neighbors. Hence ∆(D) ≤ k. To form D from H + z
we added E(A) where A ∈ {K1, K2, P3, K3, P4, K2 +P3, 2K2, P5, 2P3, C4}. Hence Lemma 2.2
shows that H + z contains a Kk − E(A) or χ(D) ≤ k − 1.

Suppose χ(D) ≥ k. Then A = K1, A = K2, A = P3, A = K3, A = P4, and A = K2 +P3

are impossible as above. Applying Lemma 4.27 shows that A = 2K2, A = P5, and A = 2P3

are impossible. Thus we must have A = C4. If k ≥ 8, then Lemma 4.23 gives a contradiction.
Hence we must have k = 7. Since H + z contains an induced K3 ∗ 2K2, we must have
N(v1) ∩ V (H) = N(v2) ∩ V (H), say N(v1) ∩ V (H) = {w1, w2}. Moreoever, xz ∈ E(G),
w1w2 ∈ E(G) and there are no edges between {w1, w2} and {x, z} in G.

Put Q :=
{
v1, . . . , vk−(r+1)

}
. Then for v ∈ Q, by the same argument as above, we must

have N(v) ∩ V (H) = {w1, w2}. Hence Q is joined to {w1, w2}, C is joined to Q, and {x, z}
and both {x, z} and {w1, w2} are joined to the same K3 in H. We must have r = 3 for
otherwise one of x, z, w1, w2 has degree larger than 7. Thus we have an M7,2 in G and
therefore G is M7,2, a contradiction.

Thus we must have χ(D) ≤ k − 1, which gives a (k − 1)-coloring of H + z in which z
receives a color c1 which is not received by any of the neighbors of v1 in H and x receives
a color c2 which is not received by any of the neighbors of v2 in H. Thus c1 is in v1’s list
and c2 is in v2’s list. Note that if x and z are adjacent then c1 6= c2. Hence, we can 2-color
G[x, z, v1, v2] from the lists. This leaves k− 3 vertices. The vertices in C have lists of size at
least k−3 and the rest have lists of size at least k−5. Since the union of any k−4 of the lists
contains one list of size k − 3, we can complete the partial coloring by Hall’s Theorem.

Corollary 2.11. For k ≥ 7, if H is a (k − 1)-clique in a k-mule G other than M7,1 and
M7,2, then any vertex in G−H has at most one neighbor in H.

Proof. Let v /∈ H be adjacent to r vertices in H. Now G[H ∪ {v}] = Kr ∗ (K1 + Kk−(r+1)).
If r ≥ 2, then G[H ∪ {v}] is forbidden by Lemma 2.10.
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Lemma 2.12. For k ≥ 7, no k-mule except M7,1 contains K4 ∗Ek−4 as a subgraph.

Proof. Let G be a k-mule other than M7,1 and suppose G contains an induced K4 ∗D where
|D| = k − 4. Then G is not M7,2. By Lemma 4.30, D is E3, a claw, a clique, or almost
complete. If D is a clique then G contains Kk, a contradiction. Now Corollary 2.11 shows
that D being almost complete is impossible. Finally, Lemma 2.8 shows that D cannot be
E3 or a claw. This contradiction completes the proof.

Since K4 ∗E∆−4 ⊆ K∆, Lemma 2.12 shows that the following conjecture is equivalent to
the Borodin-Kostochka conjecture.

Conjecture 2.13. Any graph with χ ≥ ∆ ≥ 9 contains K4 ∗E∆−4 as a subgraph.

Lemma 2.14. Let G be a k-mule with k ≥ 8. Let A and B be graphs with 4 ≤ |A| ≤ k − 4
and |B| = k − |A| such that A ∗B EG. Then A = K1 +K|A|−1 and B = K1 +K|B|−1.

Proof. Note that |B| ≥ 4. By Lemma 4.49, A ∗B is almost complete, K5 ∗E3 or our desired
conclusion holds. The first and second cases are impossible by Corollary 2.11 and Lemma
2.8.

This shows that the following conjecture is a natural weakening of Borodin-Kostochka.

Conjecture 2.15. Let G be a graph with ∆(G) = k ≥ 9. If Kt,k−t 6⊆ G for all 4 ≤ t ≤ k−4,
then G can be (k − 1)-colored.

In the next section we create the tools needed to reduce the 4 in these lemmata to 3.

2.2 Tooling up

For an independent set I in a graph G, we write G
[I]

for the graph formed by collapsing I to

a single vertex and discarding duplicate edges. We write [I] for the resulting vertex in the
new graph. If more than one independent set I1, I2, . . . , Im are collapsed in succession we
indicate the resulting graph by G

[I1][I2]···[Im]
.

Lemma 2.16. Let G be a k-mule other than M7,1 and M7,2 with k ≥ 7 and H C G. If
x, y ∈ V (H), xy 6∈ E(H) and |NH(x) ∪NH(y)| ≤ k, then there exists a (k− 1)-coloring π of
H such that π(x) = π(y).

Proof. Suppose x, y ∈ V (H), xy 6∈ E(H) and |NH(x) ∪NH(y)| ≤ k. Put H ′ := H
[x,y]

. Then

H ′ ≺ H via the natural epimorphism f : H � H ′. By applying Lemma 2.2 we either get the
desired (k−1)-coloring π of H or a Kk−1 in H with V (Kk−1) ⊆ N(x)∪N(y). But k−1 ≥ 6,
so one of x or y has at least three neighbors in Kk−1 violating Corollary 2.11.

Lemma 2.17. Let G be a k-mule other than M7,1 and M7,2 with k ≥ 7 and HCG. Suppose
there are disjoint nonadjacent pairs {x1, y1} , {x2, y2} ⊆ V (H) with dH(x1), dH(y1) ≤ k − 1
and |NH(x2) ∪NH(y2)| ≤ k. Then there exists a (k − 1)-coloring π of H such that π(x1) 6=
π(y1) and π(x2) = π(y2).
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Proof. Put H ′ := H
[x2,y2]

+ x1y1. Then H ′ ≺ H via the natural epimorphism f : H � H ′.

Suppose the desired (k − 1)-coloring π of H doesn’t exist. Apply Lemma 2.2 to get a Kk

in H ′. Put z := [x2, y2]. By Lemma 2.5 the Kk must contain z and by Lemma 2.10, the
Kk must contain x1y1; hence the Kk contains x1, y1, and z. Thus H contains an induced
subgraph A := {x1, y1} ∗Kk−3 where V (A) ⊆ NH(x2) ∪NH(y2). Then x2 and y2 each have
at most two neighbors in the Kk−3 by Lemma 2.12 and Lemma 4.34. Thus k = 7 and both
x2 and y2 have exactly two neighbors in the K4. One of x2 or y2 has at least one neighbor in
{x1, y1}, so by symmetry we may assume that x2 is adjacent to x1. But then {x2} ∪ V (A)
induces either a K2 ∗ antichair (if x2 6↔ y1) or a graph containing K2 ∗C4 (if x2 ↔ y1), and
both are impossible by Lemma 4.50.

2.3 Using our new tools

Figure 4: The mule M8.

Lemma 2.18. For k ≥ 7, the only k-mules containing K3 ∗Ek−3 as a subgraph are M7,1,
M7,2 and M8.

Proof. Suppose not and let G be a k-mule other than M7,1, M7,2 and M8 containing F :=
C ∗B as an induced subgraph where C = K3 and B is an arbitrary graph with |B| = k− 3.
By Lemma 4.34, B is: E3 ∗K|B|−3, almost complete, Kt +K|B|−t, K1 +Kt +K|B|−t−1, or
E3 +K|B|−3. The first two options are impossible by Lemma 2.12.

First, suppose there is no z ∈ V (G − F ) with C ⊆ N(z). Let π be the (k − 1)-coloring
of G − F guaranteed by Lemma 2.7. Put L := Lπ. Let I be a maximal independent set in
B. If there are x, y ∈ I and c ∈ L(x) ∩ L(y), then we may color x and y with c and then
greedily complete the coloring to the rest of F giving a contradiction. Thus we must have
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k − 1 ≥
∑
v∈I

|L(v)|

≥
∑
v∈I

(dF (v)− 1)

=
∑
v∈I

(dB(v) + 3− 1)

= 2 |I|+
∑
v∈I

dB(v)

= |B|+ |I|
= k − 3 + |I| .

Therefore |I| ≤ 2 and hence B is Kt +K|B|−t. Put N :=
⋃
w∈C N(w) ∩ V (G − F ). Then

|N | ≥ 2 by assumption. Pick x1, y1 ∈ N and nonadjacent x2, y2 ∈ V (B) and put H :=
G [V (G− F ) ∪ {x2, y2}]. Plainly, the conditions of Lemma 2.17 are satisfied and hence we
have a (k − 1)-coloring γ of H such that γ(x1) 6= γ(y1) and γ(x2) = γ(y2). But then we can
greedily complete this coloring to all of G, a contradiction.

Thus we have z ∈ V (G − F ) with C ⊆ N(z). Put B′ := G [V (B) ∪ {z}] and F ′ :=
G [V (F ) ∪ {z}]. As above, using Lemma 4.34 and Lemma 2.12, we see that B′ is Kt +K|B′|−t,
K1 +Kt +K|B′|−t−1 or E3 +K|B′|−3.

Suppose B′ is E3 +K|B′|−3, say the E3 is {z1, z2, z3}. Since k ≥ 7, we have w1, w2 ∈
V (B′) − {z1, z2, z3}. Then dF ′(z3) + dF ′(w1) = k and hence we may apply Lemma 2.16
to get a (k − 1)-coloring ζ of G − F ′ such that there is some c ∈ Lζ(z3) ∩ Lζ(w1). Now
|Lζ(z1)|+ |Lζ(z2)|+ |Lζ(w2)| ≥ 2 + 2 + k − 4 = k and hence there is a color c1 that is in at
least two of Lζ(z1), Lζ(z2) and Lζ(w2). If c1 = c, then c appears on an independent set of
size 3 in B′ and we may color this set with c and greedily complete the coloring. Otherwise,
B′ contains two disjoint nonadjacent pairs which we can color with different colors and again
complete the coloring greedily, a contradiction.

Now suppose B′ is K1 +Kt +K|B′|−t−1. By Lemma 2.10, we must have 2 ≤ t ≤ |B′| − 3.
Let x be the vertex in the K1, w1, w2 ∈ V (Kt) and z1, z2 ∈ V (K|B′|−t−1). Then dF ′(w1) +
dF ′(z1) = k+1 and hence we may apply Lemma 2.16 to get a (k−1)-coloring ζ of G−F ′ such
that there is some c ∈ Lζ(w1)∩Lζ(z1). Now |Lζ(x)|+ |Lζ(w2)|+ |Lζ(z2)| ≥ 2 +k−1 = k+ 1
and hence there is are at least two colors c1, c2 that are each in at least two of Lζ(x), Lζ(w2)
and Lζ(z2). If c1 6= c or c2 6= c, then B′ contains two disjoint nonadjacent pairs which we
can color with different colors and then complete the coloring greedily. Otherwise c appears
on an independent set of size 3 in B′ and we may color this set with c and greedily complete
the coloring, a contradiction.

Therefore B′ must be Kt +K|B′|−t. By Lemma 2.10, we must have 3 ≤ t ≤ |B′|−3. Thus
k ≥ 8. Let X and Y be the two cliques covering B′. Let x1, x2 ∈ X and y1, y2 ∈ Y . Put
H := G [V (G− F ′) ∪ {x1, x2, y1, y2}] and H ′ := H

[x1,y1][x2,y2]
. For i ∈ [2], dF ′(xi) + dF ′(yi) =

k + 2 and thus ∆(H ′) ≤ k. If χ(H ′) ≤ k − 1, then we have a (k − 1)-coloring of H which
can be greedily completed to all of G, a contradiction. Hence, by Lemma 2.2, H ′ contains
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Kk. Thence H − {x1, y1, x2, y2} contains a Kk−2, call it A, such that V (A) ⊆ N(xi) ∪N(yi)
for i ∈ [2]. Since dF ′(xi) + dF ′(yi) = k + 2, we see that NH(xi) ∩ NH(yi) = ∅ for i ∈ [2].
But we can play the same game with the pairs {x1, y2} and {x2, y1}. We conclude that
N(x1) ∩ V (A) = N(x2) ∩ V (A) and N(y1) ∩ V (A) = N(y2) ∩ V (A). In fact we can extend
this equality to all of X and Y . Put Q := N(x1) ∩ V (A) and P := N(y1) ∩ V (A). Then
we conclude that X is joined to Q and Y is joined to P . Moreover, we already know
that X and Y are joined to the same K3. The edges in these joins exhaust the degrees
of all the vertices, hence G is a 5-cycle with vertices blown up to cliques. If k = 8, then
|X| = |Y | = 3 and thus |Q| = |P | = 3, but then G = M8, a contradiction. So k ≥ 9. Since
|X| + |Y | = k − 2 ≥ 7, we have either |X| ≥ 4 or |Y | ≥ 4. If |X| ≥ 4, then for each q ∈ Q,
we have d(q) ≥ (k− 2)− 1 + |X| ≥ k+ 1, contradiction. If |Y | ≥ 4, then for each p ∈ P , we
have d(p) ≥ (k − 2)− 1 + |Y | ≥ k + 1, contradiction.

Since K3 ∗E∆−3 ⊆ K∆, Lemma 2.18 shows that Conjecture 1.17 is equivalent to the
Borodin-Kostochka conjecture.

Lemma 2.19. Let G be a k-mule with k ≥ 7 other than M7,1, M7,2 and M8. Let A and B be
graphs with 3 ≤ |A| ≤ k − 3 and |B| = k − |A| such that A ∗B EG. Then A = K1 +K|A|−1

and B = K1 +K|B|−1.

Proof. Suppose the lemma is false and let A ∗B EG be a counterexample.
First suppose |A| , |B| ≥ 4. Then, by Lemma 4.49, A ∗B is almost complete or K5 ∗E3.

The first and second cases are impossible by Corollary 2.11 and Lemma 2.8 respectively.
Thus we may assume |A| = 3. By Lemma 2.18, A ∈ {E3, P3, K1 +K2}. If A = E3, then

B is complete by Lemma 4.44, but this is impossible by Lemma 2.8. If A = P3, then B is
complete by Lemma 4.25, but this is impossible by Lemma 2.5. Hence A = K1 +K2. By
Lemma 4.48, B is complete or K1 +K|B|−1. The former is impossible by Lemma 2.9 and the
latter by supposition.

Lemma 2.19 proves our main result, that Conjecture 1.15 is equivalent to the Borodin-
Kostochka conjecture.

2.4 The low vertex subgraph of a mule

In this section we show that if a mule is not regular, then the subgraph of non-maximum-
degree vertices is severely restricted. For a vertex critical graph G we write L(G) for the
subgraph induced on the vertices of degree χ(G)−1 in G and H(G) for the subgraph induced
on the rest of the vertices. We call v ∈ V (G) low if v ∈ V (L(G)) and high otherwise.

Lemma 2.20. For k ≥ 6, no k-mule contains an induced E2 ∗Kk−2 with some vertex low.

Proof. Since M6,1 and M7,1 contain no such induced subgraph, the lemma follows from
Lemma 2.5.

Lemma 2.21. If G is a k-mule with k ≥ 6, then L(G) is complete.

Proof. Let G be a k-mule with k ≥ 6 and suppose G has nonadjacent low vertices x and y.
Then G+xy ≺ G and hence, by Lemma 2.2, G+xy contains a Kk. But then G contains an
E2 ∗Kk−2 with some vertex low, contradicting Lemma 2.20. Hence L(G) is complete.
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Lemma 2.22. If G is a k-mule with k ≥ 6 other than M6,1 and M7,1, then |L(G)| ≤ k − 2.

Proof. Let G be a k-mule with k ≥ 6 other than M6,1 and M7,1. By Lemma 2.21, L(G) is
complete and hence |L(G)| ≤ k − 1. Suppose |L(G)| = k − 1. Since G doesn’t contain Kk,
no high z is adjacent to all of L(G). Hence, by Lemma 2.7, there is a (k − 1)-coloring of
H(G) that we can complete to all of G using Hall’s Theorem. This contradiction completes
the proof.

Lemma 2.23. Let G be a k-mule with k ≥ 6. If a high x ∈ V (G) has at least three low
neighbors, then x is adjacent to all low vertices in G.

Proof. Assume the lemma is false. Let x be a high degree vertex with at least three neighbors
in V (L(G)). If |V (L(G))| = 3, then the claim holds. So assume that |V (L(G))| ≥ 4 and
choose y ∈ V (L(G)) \N(x). Let A = V (L(G)) ∩N(x). By Lemma 2.21, L(G) is complete.
Thus, G[{x, y}∪A] = E2 ∗K|A|. Since L(v) = d(v) for all v ∈ (A∪{y}), Lemma 4.54 implies
that E2 ∗K|A| cannot appear in G. This contradiction implies the lemma.

2.5 Restrictions on the independence number

The Borodin-Kostochka conjecture has been proven for graphs with independence number
at most two [1]. Here we prove that if we wish to prove the Borodin-Kostochka conjecture
for graphs with independence number at most a for any a ≤ 6, it suffices to construct a
K∆−1.

For a ≥ 2, let Cak be those G ∈ Ck with α(G) ≤ a. By a (k, a)-mule we mean a Cak -mule.
Note that if G ∈ Cak and for some H ∈ Ck we have H ≺ G, then H ∈ Cak as well. Therefore
any (k, a)-mule is also a k-mule.

Theorem 2.24. For k ≥ 7 and 2 ≤ a ≤ k − 3, no (k, a)-mule except M7,1 contains a Kk−1.

Proof. Suppose otherwise and let G be such a (k, a)-mule containing a Kk−1, call it H. By
Corollary 2.11, each vertex in G − H has at most one neighbor in H. Let π be a (k − 1)-
coloring of G−H. Then |Lπ(v)| ≥ k − 3 for all v ∈ V (H). Since H cannot be colored from
Lπ, applying Hall’s Theorem shows that either |Pot(Lπ)| ≤ k− 2 or there is some x ∈ V (H)
such that |PotH−x(Lπ)| ≤ k − 3. In the former case, π must have some color class to which
each vertex of H is adjacent and hence α(G) ≥ k − 1, a contradiction. In the latter case, π
must have two color classes to which each vertex of H − x is adjacent and hence G has two
disjoint independent sets of size k−2. Again we have a contradiction since α(G) ≥ k−2.

It follows that Conjecture 1.22 is equivalent to the Borodin-Kostochka conjecture for
graphs with independence number at most 6.

3 Connectivity of complements

As a basic application of our list coloring lemmas, we prove that for k ≥ 5 any G ∈ Ck has
maximally connected complement.
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Lemma 3.1. Fix k ≥ 5. If G ∈ Ck and A ∗B CG for graphs A and B with 1 ≤ |A| ≤ |B|,
then |A ∗B| ≤ ∆(G) + 1.

Proof. Let G ∈ Ck and A ∗BEG for graphs A and B with 1 ≤ |A| ≤ |B|. Assume |A ∗B| >
∆(G) + 1. To avoid a vertex with degree larger than ∆(G), we must have ∆(A) ≤ |A| − 2
and ∆(B) ≤ |B| − 2. In particular, both A and B are incomplete, so 2 ≤ |A| ≤ |B| and
both A and B contain an induced E2. Hence, by Lemma 4.27, both A and B are the disjoint
union of complete subgraphs and at most one P3.

First, assume |A| = 2, say A = {x1, x2}. Since |B| ≥ ∆(G), we conclude that N(x1) =
N(x2). Thus x1 and x2 are nonadjacent twins in a vertex critical graph which is impossible.

Thus we may assume that |A| ≥ 3. If A contained an induced P3, then G would have
an induced E2 ∗ (K1 ∗B). For K1 ∗B to be the disjoint union of complete subgraphs and at
most one P3, B must either be E2 or complete, both of which are impossible. Hence A is a
disjoint union of at least two complete subgraphs. The same goes for B.

Assume that A is edgeless. Then, by Lemma 4.44, B must be E3 or P3. Hence ∆(G)+1 <
|A|+ |B| = 6, giving the contradiction ∆(G) ≤ 4.

Since A is the disjoint union of at least two complete subgraphs and contains an edge,
it contains P3. By Lemma 4.48, B must be either E3 or the disjoint union of a vertex and
a complete subgraph. As above, B = E3 is impossible. In particular B contains P3 and
using Lemma 4.48 again, we conclude that A is the disjoint union of a vertex and a complete
subgraph giving the final contradiction ω(G) ≥ ω(A ∗B) ≥ ω(A) + ω(B) ≥ |A|+ |B| − 2 ≥
∆(G).

Lemma 3.2. Fix k ≥ 5. If G ∈ Ck, then G is maximally connected; that is, κ(G) = δ(G).

Proof. Let G ∈ Ck and let S be a cutset in G with |S| = κ(G). To get a contradiction,
assume that |S| < δ(G) = |G| − (∆(G) + 1). Since G − S is disconnected, G − S = A ∗B
for some graphs A and B with 1 ≤ |A| ≤ |B|. We have |A| + |B| =

∣∣G− S∣∣ = |G| − |S| >
|G| − (|G| − (∆(G) + 1)) = ∆(G) + 1. But then Lemma 3.1 gives a contradiction.

4 List coloring lemmas

In this section we use list-coloring lemmas to forbid a large class of graphs from appearing
as subgraphs of mules. In each case, we assume that such a graph H C G appears as an
induced subgraph of a mule G. By the minimality of G, we can color G \ H with ∆ − 1
colors. If H can be colored regardless of which colors are forbidden by its colored neighbors
in G \H, then we can clearly extend this coloring to all of G. We use the term d1-choosable
to describe such a graph H.

We characterize all graphs A ∗B with |A| ≥ 2, |B| ≥ 2 that are not d1-choosable. The
characterization is somewhat lengthy, so we split it into a number of lemmas. For the case
|A| ≥ 4, |B| ≥ 4, see Lemma 4.49. When |A| = 3, we consider the four cases A = E3

(Lemma 4.44), A = P3 (Lemma 4.48), A = P3 (Lemma 4.31), and A = K3 (Lemma 4.34).
When |A| = 2, we consider the case A = E2 in Lemma 4.27 and the case A = K2 in
Lemma 4.52. Finally, in Lemma 4.58, we characterize all triangle-free graphs B such that
K1 ∗B is not d1-choosable.
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Let G be a graph. A list assignment to the vertices of G is a function from V (G) to the
finite subsets of N. A list assignment L to G is good if G has a coloring c where c(v) ∈ L(v)
for each v ∈ V (G). It is bad otherwise. We call the collection of all colors that appear in L,
the pot of L. That is Pot(L) :=

⋃
v∈V (G) L(v). For a subgraph H of G we write PotH(L) :=⋃

v∈V (H) L(v). For S ⊆ Pot(L), let GS be the graph G [{v ∈ V (G) | L(v) ∩ S 6= ∅}]. We also

write Gc for G{c}. We let B(L) be the bipartite graph that has parts V (G) and Pot(L) and
an edge from v ∈ V (G) to c ∈ Pot(L) iff c ∈ L(v). For f : V (G) → N, an f -assignment on
G is an assignment L of lists to the vertices of G such that |L(v)| = f(v) for each v ∈ V (G).
We say that G is f -choosable if every f -assignment on G is good.

4.1 Shrinking the pot

In this section we prove a lemma about bad list assignments with minimum pot size. Some
form of this lemma has appeared independently in at least two places we know of—Kierstead
[8] and Reed and Sudakov [16]. We will use this lemma repeatedly in the arguments that
follow.

Given a graph G and f : V (G)→ N, we have a partial order on the f -assignments to G
given by L < L′ iff |Pot(L)| < |Pot(L′)|. When we talk of minimal f -assignments, we mean
minimal with respect to this partial order.

Lemma 4.1. Let G be a graph and f : V (G)→ N. Assume G is not f -choosable and let L
be a minimal bad f -assignment. Assume L(v) 6= Pot(L) for each v ∈ V (G). Then, for each
nonempty S ⊆ Pot(L), any coloring of GS from L uses some color not in S.

Proof. Suppose not and let ∅ 6= S ⊆ Pot(L) be such that GS has a coloring φ from L using
only colors in S. For v ∈ V (G), let h(v) be the smallest element of Pot(L) − L(v) (this is
well defined by assumption). Pick some c ∈ S and construct a new list assignment L′ as
follows.

L′(v) =


L(v) if v ∈ V (G)− V (GS)
L(v) if v ∈ V (GS) and c 6∈ L(v)

(L(v)− {c}) ∪ {h(v)} if v ∈ V (GS) and c ∈ L(v)

Note that L′ is an f -assignment and Pot(L′) = Pot(L)−{c}. Thus, by minimality of L,
we can properly color G from L′. In particular, we have a coloring of V (G) − V (GS) from
L using no color from S. We can complete this to a coloring of G from L using φ. This
contradicts the fact that L is bad.

Definition 5. A bipartite graph with parts A and B has positive surplus (with respect to
A) if |N(X)| > |X| for all ∅ 6= X ⊆ A.

Lemma 4.2. Let G be a graph and f : V (G)→ N. Assume G is not f -choosable and let L
be a minimal bad f -assignment. Assume L(v) 6= Pot(L) for each v ∈ V (G). Then B(L) has
positive surplus (with respect to Pot(L)).

Proof. Suppose not and choose ∅ 6= X ⊆ Pot(L) such that |N(X)| ≤ |X| minimizing |X|.
If |X| = 1, then GX can be colored from X contradicting Lemma 4.1. Hence |X| ≥ 2.
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By minimality of |X|, for any Y ⊂ X, |N(Y )| ≥ |Y | + 1. Hence, for any x ∈ X, we
have |N(X)| ≥ |N(X − {x})| ≥ |X − {x}| + 1 = |X|. Thus, by Hall’s Theorem, we have
a matching of X into N(X), but |N(X)| ≤ |X| so this gives a coloring of GX from X
contradicting Lemma 4.1.

Our approach to coloring a graph (particularly a join) will often be to consider nonadja-
cent vertices u and v and show that their lists contain a common color. By the pigeonhole
principle, this follows immediately when |L(u)|+|L(v)| > |Pot(L)|. We will use the following
lemma frequently throughout the remainder of this paper.

Small Pot Lemma. Let G be a graph and f : V (G)→ N with f(v) < |G| for all v ∈ V (G).
If G is not f -choosable, then G has a minimal bad f -assignment L such that |Pot(L)| < |G|.

Proof. Suppose not and let L be a minimal bad f -assignment. For each v ∈ V (G) we have
|L(v)| = f(v) < |G| ≤ |Pot(L)| and hence L(v) 6= Pot(L). Thus by Lemma 4.2 we have the
contradiction |G| ≥ |N(Pot(L))| > |Pot(L)|.

4.2 Degree choosability

Definition 6. Let G be a graph and r ∈ Z. Then G is dr-choosable if G is f -choosable
where f(v) = d(v)− r.

Note that a vertex critical graph with χ = ∆ + 1 − r contains no induced dr-choosable
subgraph. Since we are working to prove the Borodin-Kostochka conjecture, we will focus
on the case r = 1 and primarily study d1-choosable graphs. For r = 0, we have the following
well known generalization of Brooks’ Theorem (see [2], [6], [11], [5] and [7]).

Definition 7. A Gallai tree is a graph all of whose blocks are complete graphs or odd cycles.

Classification of d0-choosable graphs. For any connected graph G, the following are
equivalent.

• G is d0-choosable.

• G is not a Gallai tree.

• G contains an induced even cycle with at most one chord.

We give a couple lemmas about d0-assignments that will be useful in our study of d1-
assignments. The following lemma was used in [11].

Lemma 4.3. Let L be a bad d0-assignment on a connected graph G and x ∈ V (G) a non-
cutvertex. Then L(x) ⊆ L(y) for each y ∈ N(x).

Proof. Suppose otherwise that we have c ∈ L(x)−L(y) for some y ∈ N(x). Coloring x with
c leaves at worst a d0-assignment L′ on the connected H := G − x where |L′(y)| > dH(y).
But then we can complete the coloring, a contradiction.

Lemma 4.4. If L is a bad d0-assignment on a connected graph G, |Pot(L)| < |G|.
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Proof. Suppose that the lemma is false and choose a connected graph G together with a
bad d0-assignment L where |Pot(L)| ≥ |G| minimizing |G|. Plainly, |G| ≥ 2. Let x ∈ G
be a noncutvertex (any end block has at least one). By Lemma 4.3, L(x) ⊆ L(y) for each
y ∈ N(x). Thus coloring x decreases the pot by at most one, giving a smaller counterexample.
This contradiction completes the proof.

We also need a few basic lemmas about how dr-choosability behaves with respect to
induced subgraphs.

Lemma 4.5. Fix r ≥ 0. Let G be a graph and H E G a dr-choosable subgaph. If L is a
dr-assignment on G and G − H is properly colorable from L, then G is properly colorable
from L.

Proof. Color G − H from L. Let L′ be the resulting list assignment on H. Since each
v ∈ V (H) must be adjacent to as many vertices as colors in G −H we see that L′ is again
a dr-assignment. The lemma follows.

Lemma 4.6. Fix r ≥ 0. Let G be a graph and H E G a dr-choosable subgaph. If there
exists an ordering v1, . . . , vt of the vertices of G−H such that vi has degree at least r+ 1 in
G[V (H) ∪

⋃
1≤j≤i−1 vj] for each i, then G is dr-choosable.

Proof. Let L be a dr-assignment on G. Go through G − H in order vt, . . . , v1 coloring vi
with the smallest available color in L(vi). Since when we go to color vi, it has at least r + 1
uncolored neighbors we succeed in coloring G − H. Now the lemma follows from Lemma
4.5.

We will also use the following immediate consequence of the pigeonhole principle.

Lemma 4.7. If S1, . . . , Sm are nonempty subsets of a finite set T and
∑

i≥1 |Si| > (m−1) |T |,
then

⋂
i≥1 Si 6= ∅.

4.3 Handling joins

The main result of this section is Lemma 4.14, which plays a key role in our classification of
bad graphs A ∗ B. Specifically, Lemma 4.14 is essential to the proof of Lemma 4.23, which
considers the case when |A| ≥ 4 and B is arbitrary.

Lemma 4.8. Fix r ≥ 0. Let A be a graph with |A| ≥ r + 1 and B a nonempty graph. If
A ∗B is dr-choosable, then A ∗C is dr-choosable for any graph C with B E C.

Proof. Assume A ∗B is dr-choosable and let C be a graph with B E C. Put H = C − B.
For each v ∈ V (H), |L(v)| ≥ d(v)− r ≥ dH(v) + r + 1− r = dH(v) + 1. Thus we may color
H from its lists. By Lemma 4.5, we can complete the coloring to all of A ∗C.

Lemma 4.9. Fix r ≥ 0. Let A be a graph with |A| ≥ r and B a nonempty graph. If A ∗B
is dr-choosable, then A ∗C is dr-choosable for any connected graph C with B E C.
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Proof. Assume A ∗B is dr-choosable and let C be a connected graph with B E C. Put
H = C − B. For each v ∈ H, |L(v)| ≥ d(v) − r ≥ dH(v) + r − r = dH(v). Since C
is connected, each component of H has a vertex v that hits a vertex in B and hence has
|L(v)| ≥ dH(v) + 1. Thus we may color H from its lists. By Lemma 4.5, we can complete
the coloring to all of A ∗C.

Lemma 4.10. Fix r ≥ 0. Let G be a dr−1 choosable graph with at least 2r+2 vertices. Then
E2 ∗G is dr-choosable.

Proof. Let x, y be the vertices in the E2. Suppose E2 ∗G is not dr-choosable. Then by the
Small Pot Lemma, we have a dr-assignment L with |Pot(L)| < 2+|G|. Now |L(x)|+|L(y)| ≥
d(x) + d(y) − 2r ≥ 2 |G| − 2r ≥ 2 + |G| > |Pot(L)|, since |G| ≥ 2r + 2. Thus we can use
a single common color on x and y, leaving a dr−1-assignment on G. We may now complete
the coloring, giving a contradiction.

Since every graph is d−1-choosable we get immediately.

Corollary 4.11. For r ≥ 0, both Er+2
2 and Er+1

2 ∗K2 are dr-choosable.

Lemma 4.12. Fix r ≥ 0. Let A be a graph with |A| ≥ 3r + 2 and B an arbitrary graph. If
A ∗B is not dr-choosable, then ω(B) ≥ |B| − 2r.

Proof. Suppose G := A ∗B is not dr-choosable and let L be a minimal bad dr-assignment.
Then, by the Small Pot Lemma, |Pot(L)| ≤ |G| − 1. Let g : S → PotS(L) be a partial
coloring of B from L maximizing |S| − |im(g)| and then minimizing |S|. Color S using g
and let L′ be the resulting list assignment.

Put H := G − S and C := B − S. First suppose that |S| − |im(g)| ≥ r + 1. For each
v ∈ C we have |L′(v)| ≥ dC(v)− r+ 3r+ 2 > dC(v), so we can complete g to C. This leaves
each v ∈ V (A) with a list of size at least dA(v)− r + |S| − |im(g)| > dA(v). Hence, we can
complete the coloring to all of G. Thus L is not bad after all, giving a contradiction.

So instead we assume that |S| − |im(g)| ≤ r. By the minimality condition on |S| we
see that g has no singleton color classes. In particular, |S| ≥ 2 |im(g)|. By combining this
inequality with |S| − |im(g)| ≤ r, we get |S| ≤ 2r. Since |C| = |B| − |S| ≥ |B| − 2r, the
conclusion will follow if we can show that C is complete.

By definition, |Pot(L′)| = |Pot(L)| − |im(g)|. By the maximality condition on g, every
pair of nonadjacent vertices in C must have disjoint lists under L′ (otherwise we could use a
common color on nonadjacent vertices in C and increase |S| − |im(g)|). Let I be a maximal
independent set in C. To reach a contradiction, we assume that |I| ≥ 2. Then for all the
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elements of I to have disjoint lists, we must have∑
v∈I

|L′(v)| ≤ |Pot(L′)|∑
v∈I

(dH(v)− r) ≤ |Pot(L′)|∑
v∈I

(|A|+ dC(v)− r) ≤ |Pot(L′)|

(|A| − r) |I|+
∑
v∈I

dC(v) ≤ |Pot(L′)|

(|A| − r) |I|+ |C| − |I| ≤ |Pot(L′)|
(|A| − r − 1) |I|+ |B| − |S| ≤ |A|+ |B| − 1− |im(g)|

(|A| − r − 1) |I| ≤ |A| − 1 + |S| − |im(g)|
2(|A| − r − 1) ≤ |A| − 1 + |S| − |im(g)|
|A| − 2r − 1 ≤ |S| − |im(g)|

r + 1 ≤ |S| − |im(g)| .

This final inequality contradicts our assumption that |S| − |im(g)| ≤ r. Hence |I| ≤ 1;
that is, C is complete.

Lemma 4.13. Fix r ≥ 1. Let A be a connected graph and B an arbitrary graph such that
A ∗B is not dr-choosable. Let L be a minimal bad dr-assignment on A ∗B. If B is colorable
from L using at most |B| − r colors, then |Pot(L)| ≤ |A|+ |B| − 2.

Proof. To get a contradiction suppose that |Pot(L)| ≥ |A|+ |B| − 1 and that B is colorable
from L using at most |B| − r colors. If |PotA(L)| ≥ |Pot(L)|+ 1− r, then coloring B with
at most |B| − r colors leaves at worst a d0-assignment L′ on A with |Pot(L′)| ≥ |A|. Hence
the coloring can be completed to A by Lemma 4.4, a contradiction.

Thus we may assume that |PotA(L)| ≤ |Pot(L)| − r. Put S := Pot(L) − PotA(L).
Let π be a coloring of B from L using at most |B| − r colors, say π uses colors C. Then
|C| = |B| − r and S ∩ C = ∅ for otherwise coloring B leaves at worst a d−1-assignment on
A. Also, π−1(c) 6⊆ V (GS) for any c ∈ C since otherwise we could recolor π−1(c) with colors
from S to get at worst a d−1-assignment on A. In particular, |GS| ≤

∑
c∈C (|π−1(c)| − 1) =

|B| − |C| = r ≤ |S|. But this inequality contradicts Lemma 4.2.

We now use Lemma 4.13 to strengthen Lemma 4.12.

Lemma 4.14. Fix r ≥ 1. Let A be a connected graph with |A| ≥ 3r+ 1 and B an arbitrary
graph. If A ∗B is not dr-choosable, then ω(B) ≥ |B| − 2r.

Proof. Suppose G := A ∗B is not dr-choosable and let L be a minimal bad dr-assignment.
Then, by the Small Pot Lemma, |Pot(L)| ≤ |G| − 1. Let g : S → PotS(L) be a partial
coloring of B from L maximizing |S| − |im(g)| and then minimizing |S|. Color S using g
and let L′ be the resulting list assignment.

Put C := B − S. Running through the argument in Lemma 4.12 with 3r + 1 in place
of 3r + 2 shows that we must have |S| − |im(g)| = r. But then completing g to C gives a
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coloring of B from L using at most |B|−r colors. Thus, by Lemma 4.13, |Pot(L)| ≤ |G|−2.
Now running through the argument in Lemma 4.12 again completes the proof.

4.4 The r = 1 case

4.4.1 Some preliminary tools

The Small Pot Lemma says that if A ∗B is not d1-choosable, then A ∗B has a bad d1-
assignment L such that |Pot(L)| ≤ |A|+ |B| − 1. In this section, we study conditions under
which |Pot(L)| ≤ |A|+ |B| − 2. We also prove a key lemma for coloring graphs of the form
K1 ∗B. In the following section, our results here help us to find nonadjacent vertices with a
common color.

Lemma 4.15. Let A be a graph with |A| ≥ 2, B an arbitrary graph and L a d1-assignment
on A ∗B. If B has an independent set I such that (|A| − 1) |I| + |EB(I)| > |Pot(L)|, then
B can be colored from L using at most |B| − 1 colors.

Proof. Suppose that B has an independent set I such that (|A| − 1) |I|+ |E(I)| > |Pot(L)|.
Now

∑
v∈I

|L(v)| =
∑
v∈I

(d(v)− 1) = (|A| − 1)|I|+
∑
v∈I

dB(v) = (|A| − 1)|I|+ |EB(I)| > |Pot(L)|.

Hence we have distinct x, y ∈ I with a common color c in their lists. So we color x and
y with c. Since |A| ≥ 2, this leaves at worst a d−1-assignment on the rest of B. Completing
the coloring to the rest of B gives the desired coloring of B from L using at most |B| − 1
colors.

Lemma 4.16. Let G be a graph and I a maximal independent set in G. Then |E(I)| ≥
|G|−|I|. If I is maximum and |E(I)| = |G|−|I|, then G is the disjoint union of |I| complete
graphs.

Proof. Each vertex in G− I is adjacent to at least one vertex in I. Hence |E(I)| ≥ |G|− |I|.
Now assume I is maximum and |E(I)| = |G| − |I|. Then N(x) ∩ N(y) = ∅ for every

distinct pair x, y ∈ I. Also, N(x) must be a clique for each x ∈ I, since otherwise we could
swap x out for a pair of nonadjacent neighbors and get a larger independent set. Since we
can swap x with any of its neighbors to get another maximum independent set, we see that
G has components {G[{v} ∪N(v)] | v ∈ I}.

Lemma 4.17. Let A be a connected graph with |A| ≥ 4 and B an incomplete graph. If A ∗B
is not d1-choosable, then A ∗B has a minimal bad d1-assignment L such that |Pot(L)| ≤
|A|+ |B| − 2.

Proof. Suppose A ∗B is not d1-choosable and let L be a minimal bad d1-assignment on A ∗B.
Then, by the Small Pot Lemma, |Pot(L)| ≤ |A|+ |B|−1. Let I be a maximum independent
set in B. Since B is incomplete, |I| = α(B) ≥ 2. By Lemma 4.16, |EB(I)| ≥ |B| − |I| =
|B| − α(B). As |A| ≥ 4 we have (|A| − 1)|I| + |EB(I)| ≥ (|A| − 1)α(B) + |B| − α(B) ≥
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(|A| − 2)α(B) + |B| ≥ 2 |A| − 4 + |B| > |A| + |B| − 1 ≥ |Pot(L)|. Hence by Lemma 4.15,
B can be colored from L using at most |B| − 1 colors. But then we are done by Lemma
4.13.

Lemma 4.18. Let A be a connected graph with |A| = 3 and B a graph that is not the
disjoint union of at most two complete subgraphs. If A ∗B is not d1-choosable, then A ∗B
has a minimal bad d1-assignment L such that |Pot(L)| ≤ |B|+ 1.

Proof. Suppose A ∗B is not d1-choosable and let L be a minimal bad d1-assignment on
A ∗B. Then, by the Small Pot Lemma, |Pot(L)| ≤ |B|+ 2.

Let I be a maximum independent set in B. Since B is not the disjoint union of at most
two complete subgraphs, Lemma 4.16 implies that either |E(I)| > |B| − |I| or |I| ≥ 3. In
the first case, 2 |I| + |E(I)| > 2 |I| + |B| − |I| ≥ 2 + |B| ≥ |Pot(L)|. In the second case,
2 |I|+ |E(I)| ≥ 2 |I|+ |B| − |I| ≥ 3 + |B| > |Pot(L)|.

Thus by Lemma 4.15, B can be colored from L using at most |B| − 1 colors. But then
we are done by Lemma 4.13.

Lemma 4.19. Let B be a graph containing an induced claw, C4, K−4 , P5, bull, or 2P3.
If K2 ∗B is not d1-choosable, then K2 ∗B has a minimal bad d1-assignment L such that
|Pot(L)| ≤ |B|.

Proof. Suppose K2 ∗B is not d1-choosable and let L be a minimal bad d1-assignment on
K2 ∗B. Then, by the Small Pot Lemma, |Pot(L)| ≤ |B|+ 1.

Let H be an induced claw, C4, K−4 , P5, bull or 2P3 in B and M a maximum independent
set in H. Expand M to a maximal independent set I in B. We can easily verify that in
each case |EH(M)| ≥ |H| − |M | + 2, which implies that |EB(I)| ≥ |B| − |I| + 2. Hence
we have (|K2| − 1) |I| + |EB(I)| ≥ (|K2| − 2) |I| + |B| + 2 = |B| + 2 > |Pot(L)|. Now by
Lemma 4.15, B can be colored from L using at most |B| − 1 colors. But then we are done
by Lemma 4.13.

In the case that A = K1, we might not be able to finish an arbitrary precoloring of B
from L to all of B as we did above. However, if there is a precoloring that has our desired
properties, then there is a coloring of B from the lists maintaining these properties. The
following lemma makes this precise.

Lemma 4.20. Let A and B be graphs such that G := A ∗B is not d1-choosable. If either
|A| ≥ 2 or B is d0-choosable and L is a bad d1-assignment on G, then

1. for any independent set I ⊆ V (B) with |I| = 3, we have
⋂
v∈I L(v) = ∅; and

2. for disjoint nonadjacent pairs {x1, y1} and {x2, y2} at least one of the following holds

(a) L(x1) ∩ L(y1) = ∅;
(b) L(x2) ∩ L(y2) = ∅;
(c) |L(x1) ∩ L(y1)| = 1 and L(x1) ∩ L(y1) = L(x2) ∩ L(y2).
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Proof. First, suppose |A| ≥ 2. If (1) fails for I, then color all vertices in I the same, complete
the coloring to the rest of B and then to A. If (2) fails for {x1, y1} and {x2, y2}, color x1, y1

with c1 ∈ L(x1) ∩ L(y1) and x2, y2 with c2 ∈ L(x2) ∩ L(y2)− {c1}, complete the coloring to
the rest of B and then to A. The more difficult case is when |A| = 1, we handle it as follows.

For both (1) and (2) we prove the contrapositive.
(1) Suppose that B has an independent set I of size 3 such that there exists a color c

that appears in the list of each vertex in I; let I = {v1, v2, v3}. Since B is d0-choosable, B
has an L-coloring. We will modify this coloring to get an L-coloring that uses c on at least
three vertices.

For each vi in I, if vi does not have a neighbor with color c, we recolor vi with c. If c
now appears three or more times in our current coloring, then we are done. Assume that c
appears on either a single vertex w1 or on two vertices w1 and w2.

If both w1 and w2 have two neighbors in I, then we uncolor w1 and w2 and use color c on
all vertices of I. Otherwise, there exists a single vertex, say w1, with at least two neighbors
in I for which w1 is their only neighbor with color c1. Uncolor w1 and now use color c on
all of its neighbors in I1 that no longer have a neighbor with color c1. Since each uncolored
vertex has at least two neighbors with color c, we can extend the coloring to all of B. Now
since color c is used 3 or more times on B, at most |G| − 2 colors are used on G, so we can
extend the coloring to A.

(2) Suppose that B has two disjoint independent sets I1 and I2 each of size 2 and there
exist distinct colors c1 and c2 such that (for each i ∈ {1, 2}) color ci appears in the lists of
both vertices of Ii. Since B is d0-choosable, B has an L-coloring. We will show that B has an
L-coloring in which colors c1 and c2 each appear twice (or one appears at least three times).
We will modify our coloring using recoloring arguments similar to that above, although we
may need to recolor repeatedly. (If at any point our coloring of B uses a single color three
or more times, then we can stop, since we will be able to extend this coloring to A.)

If c1 does not appear in our coloring, then we recolor some vertex of I1 with c1. Suppose
that color c1 appears only once in our coloring, say on vertex u. Either we can recolor some
vertex in I1 with c1 or else both vertices in I1 are adjacent to u. In this case, we uncolor u
and use c1 on both vertices of I1. Now we have some color available for u. Thus, we may
assume that our coloring uses c1 on exactly two vertices. If neither of these vertices with c1

are in I2, then we can use the same recoloring trick for color c2. Neither vertex with c1 will
get recolored, so afterwards both colors c1 and c2 will appear on two vertices (and we’ll be
able to extend the coloring to A).

Suppose instead that both vertices with color c1 are in I2. If neither vertex in I2 is
adjacent to a vertex where color c2 is used, then we can recolor both of them with c2. Next
we can again apply the recoloring trick for color c1. Since the vertices in I2 with color c2 will
not get recolored, this will yield the desired coloring that uses each of c1 and c2 twice. So
suppose that c1 is used on both vertices in I2 and c2 is used on a vertex adjacent to at least
one vertex in I2. Since we may assume that c2 appears on only one vertex, when we use the
recoloring trick for c2, we will color at least one vertex of I2 with c2. Thus, we may assume
(up to symmetry of I1 and I2) that color c1 appears on two vertices and that exactly one of
them is in I2; we may also assume that color c2 appears on exactly one vertex.

We will show that after applying the recoloring trick at most three times we will get a
coloring of B that uses c1 on two vertices and uses c2 on two vertices. We call a vertex
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v ∈ Ii miscolored if it is colored with color c3−i. We will see that each time we apply the
recoloring trick, either we increase the total number of vertices colored with c1 and c2 or else
we decrease the number of miscolored vertices. Since we begin with at most two miscolored
vertices, after applying the recoloring trick at most three times, our coloring will use colors
c1 and c2 each twice (and we will be done).

Assume that c1 appears on two vertices and exactly one of them is miscolored; assume
that c2 appears on exactly one vertex, which may or may not be miscolored. When we
apply the recoloring trick for c2, we increase the number of vertices using c2. Thus, we are
done unless we decrease the number of vertices using c1. Since we only remove color c1 from
vertices in I2, we conclude that we’ve reduced the number of miscolored vertices. We now
apply the recoloring trick for c1. Again, we are done unless we’ve recolored a miscolored
vertex. So assume that we did. Since we have no remaining miscolored vertices, when we
now apply the recoloring trick for c2, we get a coloring that uses each of c1 and c2 twice.
Thus, we can extend the coloring of B to A.

A simple variation of the (1) case in the above together with Lemma 4.13 gives the
following pot-shrinking lemma for K1 ∗H.

Lemma 4.21. Let H be a d0-choosable graph such that G := K1 ∗H is not d1-choosable and
L a minimal bad d1-assignment on G. If some nonadjacent pair in H have intersecting lists,
then |Pot(L)| ≤ |H| − 1.

Lemma 4.22. Let A be a connected graph, let G = A ∗B, and suppose that either B is d0-
choosable or |A| ≥ 2. (1) Let L be a d1-assignment to G. If B contains disjoint independent
sets I1 and I2 such that

∑
v∈I1(d(v)− 1) ≥ |Pot(L)|+ 1 and

∑
v∈I2(d(v)− 1) ≥ |Pot(L)|+ 2,

then A ∗ B has an L-coloring. (2) In particular, if B contains disjoint independent sets
I1 and I2 such that

∑
v∈I1(d(v) − 1) ≥ |G| − 1 and

∑
v∈I2(d(v) − 1) ≥ |G|, then A ∗ B is

d1-choosable.

Proof. Let L be a bad d1-list assignment. We prove (1) and (2) simultaneously. By the Small
Pot Lemma, |Pot(L)| < |G|. Thus, since

∑
v∈I2(d(v)−1) > |Pot(L)|, we see that some color

α appears on nonadjacent vertices in I2. Either B is d0-choosable or |A| ≥ 2, so using either
Lemma 4.21 or Lemma 4.13, we get that |Pot(L)| = |G| − 2, so |G| − 1 ≥ |Pot(L)|+ 1.

Since
∑

v∈I1(d(v)−1) ≥ |Pot(L)|+ 1, we see that two vertices of I1 have a common color
β. If β appears 3 times in I2, then we are done by Lemma 4.20. Otherwise, we use β on the
vertices of I1 where it appears. After deleting β from the lists of I2, we can find a common
color on two vertices of I2. Again we are done, by Lemma 4.20.

4.4.2 A classification

In this section we classify the d1-choosable graphs of the form A ∗B where |A| ≥ 2 and
|B| ≥ 2. When |A| ≥ 4 and A is connected (or similarly for B), the characterizations follows
from Lemma 4.25 and Corollary 4.30. The remainder of the section considers the case when
each of A and B is small and/or disconnected.

Definition 8. A graph G is almost complete if ω(G) ≥ |G| − 1.
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Lemma 4.23. Let A be a connected graph with |A| ≥ 4 and B an arbitrary graph. If A ∗B
is not d1-choosable, then B is E3 ∗K|B|−3 or almost complete.

Proof. Suppose A ∗B is not d1-choosable and B is neither E3 ∗K|B|−3 nor almost complete.
Then, by Lemma 4.14, we have ω(B) = |B| − 2.

Let L be a minimal bad d1-assignment on A ∗B. Then, by Lemma 4.17, |Pot(L)| ≤
|A| + |B| − 2. Choose x1, x2 ∈ V (B) so that B − {x1, x2} is complete. Since B is not
E3 ∗K|B|−3 we have x′1, x

′
2 ∈ V (B) such that {x1, x

′
1} and {x2, x

′
2} are disjoint pairs of

nonadjacent vertices. We have |L(xi)|+ |L(x′i)| ≥ d(xi)+d(x′i)−2 ≥ 2 |A|+dB(xi)+ |B|−5.
First suppose dB(xi) > 0 for some i ∈ {1, 2}. Without loss of generality, suppose i = 1.

Then |L(x1)|+ |L(x′1)| ≥ |Pot(L)|+ 2 and |L(x2)|+ |L(x′2)| ≥ |Pot(L)|+ 1. Hence we have
different colors c1, c2 such that c1 ∈ L(x1)∩L(x′1) and c2 ∈ L(x2)∩L(x′2). Coloring the pairs
with these colors leaves a list assignment which is easily completable to all of A ∗B.

Hence we must have dB(x1) = dB(x2) = 0. But then |L(xi)|+ |L(x′i)| ≥ |Pot(L)|+ 1 for
each i ∈ {1, 2} and thus both L(x1) ∩ L(x′1) and L(x2) ∩ L(x′2) are nonempty. If they have
different colors in common, we can finish as above. If they have the same color c in common,
then coloring x1, x2 and x′1 with c leaves a list assignment which is easily completable to all
of A ∗B.

Lemma 4.24. Let A be a connected graph with |A| ≥ 6 and B an arbitrary graph. If A ∗B
is not d1-choosable, then B is almost complete.

Proof. Suppose A ∗B is not d1-choosable. By Lemma 4.23, B is E3 ∗K|B|−3 or almost
complete. Suppose that B is E3 ∗K|B|−3 and let x1, x2, x3 be the vertices in the E3.

Let L be a minimal bad d1-assignment on A ∗B. Then, by Lemma 4.17, |Pot(L)| ≤
|A| + |B| − 2. We have

∑3
i=1 |L(xi)| ≥

∑3
i=1(d(xi) − 1) = 3(|A| + |B| − 4). Since |B| ≥ 3

we have |A|+ |B| ≥ 9 and hence 3(|A|+ |B| − 4) > 2(|A|+ |B| − 2) ≥ 2 |Pot(L)|. Thus, by
Lemma 4.7, we have c ∈

⋂3
i=1 L(xi). Coloring x1, x2 and x3 with c leaves a list assignment

which is easily completable to the rest of A ∗B. This is a contradiction. Hence B is almost
complete.

When A is incomplete we can do much better.

Lemma 4.25. Let A be a connected incomplete graph with |A| ≥ 4 and B an arbitrary
graph. If A ∗B is not d1-choosable, then B is complete.

Proof. By Lemma 4.8 it will suffice to show that A ∗E2 is d1-choosable. Suppose not and let
L be a minimal bad d1-assignment on A ∗E2. Then, by Lemma 4.17, |Pot(L)| ≤ |A|. Let x1

and x2 be the vertices in the E2. Then |L(x1)| + |L(x2)| ≥ d(x1) + d(x2)− 2 = 2 |A| − 2 ≥
|Pot(L)|+ 2. Hence we have different c1, c2 ∈ L(x1) ∩ L(x2).

First, suppose there exists y ∈ V (A) such that {c1, c2} 6⊆ L(y). Without loss of generality,
assume c1 6∈ L(y). Then coloring x1 and x2 with c1 leaves a list assignment L′ on A where
|L′(v)| ≥ dA(v) for all v ∈ V (A) and |L′(y)| > dA(y). Hence the coloring can be completed,
a contradiction.

Hence {c1, c2} ⊆ L(v) for all v ∈ V (A). If α(A) ≥ 3, then coloring a maximum inde-
pendent set all with c1 leaves an easily completable list assignment. Also, if A contains two
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disjoint pairs of nonadjacent vertices, by coloring one with c1 and one with c2 we get another
easily completable list assignment. Hence A is almost complete.

Let z ∈ V (A) such that A− z is complete. Since A is incomplete, we have w ∈ V (A− z)
nonadjacent to z. Also, as A is connected we have w′ ∈ V (A − z) adjacent to z. Color
x1 and x2 with c1 and w and z with c2 to get a list assignment L′ on D := A − {w, z}
where |L′(v)| ≥ dD(v) for all v ∈ V (D) and |L′(w′)| > dD(w′). Hence the coloring can be
completed, a contradiction.

Lemma 4.26. E2 ∗ 2P3 is d1-choosable.

Proof. Suppose otherwise. Let the E2 have vertices x1 and x2 and the two P3’s have vertices
y1, y2, y3 and y4, y5, y6. By the Small Pot Lemma, we have a minimal bad d1-assignment on
E2 ∗ 2P3 with |Pot(L)| ≤ 7. Since |L(x1)| + |L(x2)| = 10 ≥ |Pot(L)| + 3, we have three
different colors c1, c2, c3 ∈ L(x1)∩L(x2). Coloring both x1 and x2 with any ci leaves at worst
a d0-assignment on the 2P3. If ci 6∈ L(y1) ∩ L(y2) ∩ L(y3) and ci 6∈ L(y4) ∩ L(y5) ∩ L(y6)
for some i, then we can complete the coloring. Thus, without loss of generality, we have
{c1, c2} ⊆ L(y1)∩L(y2)∩L(y3) and c3 ∈ L(y4)∩L(y5)∩L(y6). Color y1 and y3 with c1 and
y4 and y6 with c3. Then we can easily complete the coloring on the rest of the 2P3. We have
used at most 4 colors on the 2P3 and hence we can complete the coloring.

At this point we have enough information to completely classify the d1-choosable graphs
of the form E2 ∗B.

Lemma 4.27. E2 ∗B is not d1-choosable iff B is the disjoint union of complete subgraphs
and at most one P3.

Proof. Suppose we have B such that E2 ∗B is not d1-choosable. By Lemma 4.26, B has
at most one incomplete component. Suppose we have an incomplete component C and let
y1y2y3 be an induced P3 in C. If C 6= P3, then |C| ≥ 4 and Lemma 4.25 gives a contradiction.
Hence C = P3.

For the other direction, it is easy to see that for any B such that E2 ∗B is not d1-choosable
adding a disjoint complete subgraph to B does not make it d1-choosable. To see that E2 ∗P3

is not d1-choosable, let x1, x2 denote the vertices of the E2 and let y1, y2, y3 denote in order
the vertices of the P3. Let L(x1) = {a, b}, L(x2) = {c, d}, L(y1) = {a, c}, L(y2) = {a, b, c},
and L(y3) = {b, d}. It is easy to verify that the graph is not colorable from these lists. This
proves the lemma.

For t ≥ 4, we know that if Kt ∗B is not d1-choosable then B is almost complete; or t = 4
and B is E3 or a claw; or t = 5 and B is E3. The following two lemmas show that this
completely characterizes the d1-choosable graphs of this form.

Lemma 4.28. Almost complete graphs are not d1-choosable.

Proof. Let G be almost complete and x ∈ V (G) such that G− x is complete. Consider the
d1-assignment L given by L(v) = [d(v)− 1] for each v ∈ V (G). Now G − x is a complete
graph of size |G| − 1, but the union of the lists on G − x is only [|G| − 2], so by Hall’s
theorem, G has no coloring from these lists.
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1, 2, 3, 4

1, 2, 5, 6

3, 4, 5, 6

1, 2, 3, 4, 5, 61, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6

Figure 5: A bad d1-assignment on K5 ∗E3.

Lemma 4.29. Kt ∗E3 is d1-choosable iff t ≥ 6.

Proof. That if t ≥ 6, then Kt ∗E3 is d1-choosable follows from Lemma 4.24. For the other
direction it is enough to show that K5 ∗E3 is not d1-choosable. Figure 5 shows a bad d1-
assignment on K5 ∗E3.

Corollary 4.30. For t ≥ 4, Kt ∗B is not d1-choosable iff B is almost complete; or t = 4
and B is E3 or a claw; or t = 5 and B is E3.

Lemma 4.31. P3 ∗B is not d1-choosable iff B is E2 or complete.

Proof. Moving the center of P3 to the other side of the join and applying Lemma 4.27 proves
the lemma.

Lemma 4.32. K3 ∗P4 is d1-choosable.

Proof. Suppose otherwise. Denote the vertices of the P4 as y1, y2, y3, y4, in order. Note that
|L(y1)| + |L(y3)| = 4 + 5 ≥ |G| + 1 and |L(y2)| + |L(y4)| = 5 + 4 ≥ |G| + 1. Now we apply
(2) of Lemma 4.22 with I1 = {y1, y3} and I2 = {y2, y4}.

y1

y2 y3

y4

Figure 6: The antipaw.

Lemma 4.33. K3 ∗ antipaw is d1-choosable.
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Proof. Suppose not. We use the labeling of the antipaw given in Figure 6. Since the antipaw
is not a disjoint union of at most two complete graphs, Lemma 4.18 gives us a minimal
bad d1-assignment L on K3 ∗ antipaw with |Pot(L)| ≤ 5. Note that |L(y1)| + |L(y4)| ≥ 6
and |L(y2)| + |L(y3)| ≥ 6. Hence, by Lemma 4.20, |L(y1) ∩ L(y4)| = 1 and L(y1) ∩ L(y4) =
L(y2) ∩ L(y3). But then we have c ∈ L(y2) ∩ L(y3) ∩ L(y4) and after coloring y2, y3, and y4

with c we can complete the coloring, getting a contradiction.

Lemma 4.34. K3 ∗B is not d1-choosable iff B is almost complete, Kt +K|B|−t, K1 +Kt +K|B|−t−1,
E3 +K|B|−3, or |B| ≤ 5 and B = E3 ∗K|B|−3.

Proof. Let K3 ∗B be a graph that is not d1-choosable and let B be none of the specified
graphs. Lemma 4.18 gives us a minimal bad d1-assignment L on K3 ∗B with |Pot(L)| ≤
|B| + 1. Furthermore, the proof of Lemma 4.18 shows that we can color B with at most
|B|−1 colors. In particular we have nonadjacent x, y ∈ V (B) and c ∈ L(x)∩L(y). Coloring
x and y with c leaves a list assignment L′ on D := B−{x, y}. If c ∈ L′(z) for some z ∈ V (D),
then {x, y, z} is independent and we can color z with c and complete the coloring to get a
contradiction. Hence Pot(L′) = Pot(L)− {c}.

Suppose, for a contradiction, that D is not the disjoint union of at most two complete
subgraphs. If α(D) ≥ 3, let J be a maximum independent set in D and set γ := 0. Otherwise
D contains an induced P3 abc and we let J ⊆ V (D) be a maximal independent set containing
{a, c} and set γ := 1. Lemma 4.16 implies that

∑
v∈J dD(v) ≥ |D| − |J |+ γ. Since L is bad,

we must have

∑
v∈J

|L′(v)| ≤ |Pot(L′)|∑
v∈J

|L′(v)| ≤ |B|

2 |J |+
∑
v∈J

dD(v) ≤ |B|

2 |J |+ |D| − |J |+ γ ≤ |B|
|J |+ |D|+ γ ≤ |B|

|J |+ |B| − 2 + γ ≤ |B| .

Hence |J | ≤ 2− γ, a contradiction. Therefore D is indeed the disjoint union of at most
two complete subgraphs. (Additionally, if D is not complete then v ∈ V (D) is not adjacent
to both x and y since then we would get the same contradictory degree sum as in the case
when γ = 1.) We now consider the case that D is a complete graph and the case that D is
the disjoint union of two complete graphs.

First, suppose D is a complete graph. Plainly, |D| ≥ 2. Put X := N(x) ∩ V (D) and
Y := N(y) ∩ V (D). Suppose X − Y 6= ∅ and pick z ∈ X − Y . We have |L(y)| + |L(z)| ≥
d(y) + d(z)− 2 = dB(y) + dB(z) + 4 ≥ 0 + |B| − 2 + 4 = |B| + 2 > |Pot(L)|. By repeating
the argument given above for B − {x, y}, we see that B − {y, z} is also the disjoint union
of at most two complete subgraphs. In particular, x is adjacent to all or none of D − z. If
all, then B is almost complete, if none then B contains an induced P4 or antipaw, and both
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possibilities give contradictions by Lemmas 4.32 and 4.33. Hence X − Y = ∅. Similarly,
Y −X = ∅, so X = Y . Since B is not E2 +K|B|−2, |X| > 0. If X = V (D), then B is almost
complete. If |V (D)−X| ≥ 2, then pick w1, w2 ∈ V (D)−X. Now by considering degrees, we
see that L(x) ∩ L(w1) and L(y) ∩ L(w2) are both nonempty. Now we can color x, y, w1, w2

using only 2 colors, and then complete the coloring. Hence, we must have |V (D)−X| = 1,
so let {w} = V (D) − X. Now x and y are joined to D − w and hence B is E3 ∗K|B|−3, a
contradiction.

Thus D must instead be the disjoint union of two complete subgraphs D1 and D2. For
each i ∈ [2], put Xi := N(x) ∩ V (Di) and Yi := N(y) ∩ V (Di). From our parenthetical
remark above, we know that Xi ∩ Yi = ∅. Suppose we have z1 ∈ V (D1) and z2 ∈ V (D2)
such that L(z1) ∩ L(z2) 6= ∅. Then, by Lemma 4.20, L(z1) ∩ L(z2) = L(x) ∩ L(y). Since no
independent set of size three can have a color in common, the edges z1x and z2y or z1y and
z2x must be present. Using the same argument as for B − {x, y}, we see that B − {z1, z2}
is the disjoint union of at most two complete subgraphs. So each of x and y is adjacent
to all or none of each of V (D1 − z1) and V (D2 − z2). Thus, by symmetry, we may assume
that V (D1 − z1) ⊆ X1 and V (D2 − z2) ⊆ Y2. If |D1| = |D2| = 1, then B is the disjoint
union of two cliques, a contradiction. So, by symmetry, we may assume that |D1| ≥ 2.
Pick w ∈ V (D1 − z1). If x is not adjacent to z1, then xwz1 is an induced P3 in B. Since
X1∩Y1 = ∅, this P3 together with y either induces a P4 or an antipaw, contradicting Lemmas
4.32 and 4.33. Hence X1 = V (D1). Similarly, if |D2| ≥ 2, then Y2 = V (D2) and B is the
disjoint union of two complete subgraphs, a contradiction. Hence D2 = {z2}. But z2 must
be adjacent to y, so B is again the disjoint union of two cliques, a contradiction.

Thus for every z1 ∈ V (D1) and z2 ∈ V (D2) we have L(z1) ∩ L(z2) = ∅. Suppose there
exist z1 ∈ V (D1) and z2 ∈ V (D2) such that z1 and z2 are each adjacent to at least one of x
and y. Then |L(z1)|+ |L(z2)| ≥ d(z1) + d(z2)− 2 ≥ dB(z1) + dB(z2) + 4 ≥ |B| − 4 + 2 + 4 =
|B|+ 2 > |Pot(L)|. Hence L(z1) ∩ L(z2) 6= ∅, a contradiction.

Thus, by symmetry, we may assume that there are no edges between D1 and {x, y}.
Since no vertex in D2 is adjacent to both x and y, only one of x or y can have neighbors in
D2 lest B contain an induced P4 contradicting Lemma 4.32. Without loss of generality, we
may assume that y has no neighbors in D2. Pick w ∈ D1 and z ∈ V (D2).

Suppose that |D1| ≥ 2, |D2| ≥ 2, and there exists t ∈ D2 such that x and t are nonad-
jacent. Now choose u, v ∈ V (D1) and w ∈ V (D2) \ {t}. Now {v, w, y} is independent and
|L(v)|+ |L(w)|+ |L(y|) ≥ d(v) + d(w) + d(y)− 3 ≥ dB(v) + dB(w) + dB(y) + 6 ≥ |B|+ 2 >
|Pot(L)|. Hence either L(v)∩L(y) 6= ∅ or L(w)∩L(y) 6= ∅. Similarly, either L(u)∩L(x) 6= ∅
or L(t) ∩ L(x) 6= ∅. Thus, we can color 4 vertices using only 2 colors, and we can complete
the coloring. So now either |D1| = 1, |D2| = 1, or D2 ⊂ N(x).

If |D2| = 1, then either B = K1 + K2 + K|B|−3 or else B = E3 + K|B|−3, both of
which are forbidden. Similarly, if |D1| = 1 and x is adjacent to all or none of D2, then
B = K1 + K1 + K|B|−2 or E3 + K|B|−3. Finally, if x is adjacent to some, but not all of D2,
then B contains an antipaw. By Lemma 4.33, this is a contradiction.

It remains to show that K3 ∗B is not d1-choosable for any of the specified B’s. For B
almost complete, this follows from Lemma 4.28 and for E3 ∗K|B|−3, from Lemma 4.30. For
all the rest of the options we will give a bad list assignment with lists [|B|+ 1] on the K3.
Suppose Kt +K|B|−t. On the Kt the lists [t+ 1] and on the K|B|−t the lists [|B|+ 1] r [t].
Then any coloring of K3 ∗B from the lists must use three colors on the K3 and hence
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at least one of the cliques loses at least two colors leaving it uncolorable. Now suppose
B = K1 +Kt +K|B|−t−1. Use the list {1, |B|+ 1} on the K1, the lists [t+ 1] on the Kt and
the lists [|B + 1|] r [t+ 1] on the K|B|−t−1. This list assignment is clearly bad on K3 ∗B.
Finally suppose B = E3 +K|B|−3. Give the three K1’s the lists {1, 2}, {1, 3}, {2, 3} and the
K|B|−3 the list [|B|+ 1] r [3]. Again, this is clearly a bad list assignment on K3 ∗B.

Lemma 4.35. K2 ∗P5 is d1-choosable.

Proof. Suppose otherwise. By Lemma 4.19, we have a minimal bad d1-assignment L on
P5 ∗K2 with |Pot(L)| ≤ 5. Let y1, y2, y3, y4, y5 denote the vertices of the P5 in order. Now
|L(y2)| + |L(y4)| ≥ 6 ≥ |Pot(L)| + 1 and |L(y1)| + |L(y3)| + |L(y5)| ≥ 7 ≥ |Pot(L)| + 2. So
{y2, y4} and {y1, y3, y5} satisfy the hypotheses of Lemma 4.22, giving a contradiction.

y1

y2 y3

y4 y5

(a) The chair.

y1

y2 y3

y4 y5

(b) The antichair.

Figure 7: Labelings of the chair and the antichair.

Lemma 4.36. K2 ∗ chair is d1-choosable.

Proof. Suppose otherwise. We use the labeling of the chair given in Figure 7a. Since the
chair has an induced claw, Lemma 4.19 gives us a minimal bad d1-assignment L on K2 ∗ chair
with |Pot(L)| ≤ 5. Now |L(y2)|+ |L(y5)| ≥ 6 ≥ |Pot(L)|+1 and |L(y1)|+ |L(y3)|+ |L(y4)| ≥
7 ≥ |Pot(L)|+2. Then {y2, y5} and {y1, y3, y4} satisfy the hypotheses of Lemma 4.22, giving
a contradiction.

Lemma 4.37. K2 ∗ antichair is d1-choosable.

Proof. Suppose otherwise. We use the labeling of the antichair given in Figure 7b. Since
the antichair has an induced K−4 , Lemma 4.19 gives us a minimal bad d1-assignment L on
K2 ∗ antichair with |Pot(L)| ≤ 5. We have |L(y2)|+ |L(y5)| ≥ 7 and hence |L(y2) ∩ L(y5)| ≥
2. But then, by Lemma 4.20, we have the contradiction |L(y1)|+ |L(y3)| ≤ 5.

Lemma 4.38. K2 ∗C5 is d1-choosable.

Proof. Suppose otherwise. By the Small Pot Lemma, we have a minimal bad d1-assignment
L on C5 ∗K2 with |Pot(L)| ≤ 6. Let y0, y1, y2, y3, y4, y0 denote in order the vertices of the C5.
Then for 0 ≤ i < j ≤ 4 with i−j 6≡ 1(mod 5) we have |L(yi)|+|L(yj)| ≥ d(yi)+d(yj)−2 = 6.

First suppose |Pot(L)| ≤ 5. Then each nonadjacent pair has a color in common and
by applying Lemma 4.20 multiple times we see that there must exist c ∈

⋂
0≤i≤4 L(yi) and

no nonadacent pair can have a color other than c in common. Put Si = L(yi) − {c} and
T = Pot(L)−{c}. Then we must have S0 = T −S3, S1 = T −S3 = T −S4 and S2 = T −S4.
Hence S0 = S1 = S2 contradicting S0 ∩ S2 = ∅.

31



Therefore we must have |Pot(L)| = 6. Thus for nonadjacent yi and yj, L(yi) = Pot(L)−
L(yj). We have L(y0) = Pot(L) − L(y3), L(y1) = Pot(L) − L(y3) = Pot(L) − L(y4) and
L(y2) = Pot(L) − L(y4). Hence L(y0) = L(y1) = L(y2). Thus we may color y0 and y2 the
same and complete this coloring to the rest of B contradicting Lemma 4.13.

1, 2, 3

1, 2, 3, 4

1, 2, 3, 4

4, 5

4, 5

1, 2, 3, 4, 5

1, 2, 3, 4, 5

Figure 8: A bad d1-assignment on bull ∗K2.

Lemma 4.39. K2 ∗ 2P3 is d1-choosable.

Proof. Suppose otherwise. Let y1, y2, y3 and y4, y5, y6 denote in order the vertices of the two
P3’s. Lemma 4.19 gives us a minimal bad d1-assignment L on K2 ∗ 2P3 with |Pot(L)| ≤ 6.

Since |L(y1)|+ |L(y3)|+ |L(y4)|+ |L(y6)| = 8 ≥ |Pot(L)|+2, either three of these vertices
share a common color, or else two pairs of them share distinct common colors. Thus, if
L(y2) ∩ L(y5) 6= ∅, then we can color G by Lemma 4.20. Hence L(y2) ∩ L(y5) = ∅.

By summing list sizes, we see that some pair among each of {y1, y3, y5} and {y2, y4, y6}
must have a color in common. Since there are no edges between {y1, y3} and {y4, y6}, if
L(y1)∩L(y3) 6= ∅ and L(y4)∩L(y6) 6= ∅, then we get a contradiction. By symmetry, we may
assume that the other two options are either L(y1)∩L(y3) 6= ∅ and L(y2)∩L(y4) 6= ∅ or else
L(y1) ∩ L(y5) 6= ∅ and L(y2) ∩ L(y4) 6= ∅. In the former case, by Lemma 4.20,we must have
L(y1) ∩ L(y3) ∩ L(y4) 6= ∅, a contradiction. In the latter case, L(y1) ∩ L(y5) 6= L(y2) ∩ L(y4)
since L(y2) ∩ L(y5) = ∅, contradicting Lemma 4.20.

y1 y2

y3 y4

(a) The anticlaw.

y1 y2

y3 y4

(b) The antidiamond.

Figure 9: Labelings of the anticlaw and the antidiamond.

Note that if L is a bad d1 assignment on E3 ∗B where the E3 is {x1, x2, x3}, then L(x1)∩
L(x2) ∩ L(x3) = ∅.

Lemma 4.40. E3 ∗ anticlaw is d1-choosable.
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Proof. Suppose otherwise. The Small Pot Lemma gives us a minimal bad d1-assignment L
on E3 ∗ anticlaw with |Pot(L)| ≤ 6. Let the E3 have vertices x1, x2, x3, and let the anticlaw
have vertices y1, y2, y3, y4, with y2, y3, y4 mutually adjacent. Then

∑
i |L(xi)| = 9 and hence

there are three colors c1, c2, c3 such that for each t ∈ [3], ct ∈ L(xi) ∩ L(xj) for some
1 ≤ i < j ≤ 3.

Suppose there exists i ∈ {2, 3, 4}, say i = 2, such that y1 and yi have a common color c.
We use c on y1 and y2, and let L′(v) = L(v) − c for each uncolored v; note that c must be
absent from some xi, say x1. Now since |L′(x2)|+ |L′(x3)| ≥ 4, we can color x2 and x3 such
that at least two colors remain available on y3. Finally, we greedily color y4, y3, x3.

Otherwise, since |Pot(L)| ≤ 6, we may assume that L(y1) = {a, b} and L(y2) = L(y3) =
L(y4) = {c, d, e, f}. Now we can color x1, x2, and x3 using only two colors, exactly one of
which is in {a, b}. Finally, we greedily color y1, y2, y3, y4.

Lemma 4.41. E3 ∗ 2K2 is d1-choosable.

Proof. Suppose otherwise. The Small Pot Lemma gives us a minimal bad d1-assignment L
on E3 ∗ 2K2 with |Pot(L)| ≤ 6. Let the E3 have vertices x1, x2, x3, and let the 2K2 have
vertices y1 adjacent to y2 and y3 adjacent to y4. Then

∑
i |L(xi)| = 9 and hence there are

three colors c1, c2, c3 such that for each t ∈ [3], ct ∈ L(xi) ∩ L(xj) for some 1 ≤ i < j ≤ 3.
If all three ct appear on all four yi, then we can 2-color the 2K2, and extend the coloring to
the E3. So we may assume instead without loss of generality that c1 appears on x1 and x2,
but not y1. Now use c1 on x1 and x2, then color greedily in the order y3, y4, x3, y2, y1.

Lemma 4.42. E3 ∗E4 is d1-choosable.

Proof. Suppose otherwise. Let the E3 have vertices x1, x2, x3 and let the E4 have vertices
y1, y2, y3, y4. If there exists c ∈ ∩3

i=1L(xi), then we use c on all xi and we can finish the
coloring, so assume not. By the Small Pot Lemma, |Pot(L)| ≤ 6, so there exist two yi, say
y1 and y2, with a common color c; use c on y1 and y2. Now there exists some xi, say x3, with
c /∈ L(xi). The 4-cycle induced by x1, x2, y3, and y4 is 2-choosable; then we can extend the
coloring to x3.

Lemma 4.43. E3 ∗ antidiamond is d1-choosable.

Proof. Suppose otherwise. The Small Pot Lemma gives us a minimal bad d1-assignment
L on E3 ∗ antidiamond with |Pot(L)| ≤ 6. Let the E3 have vertices x1, x2, x3, and let
the antidiamond have vertices y1, y2, y3, y4, with y3 adjacent to y4. We can assume tht
∩3
i=1L(xi) = ∅ (since otherwise we use a common color on the xi and then greedily complete

the coloring). If y3 or y4 has a common color c with y1 or y2, then we can use c on those
two vertices and proceed as in the case of E3 ∗E4, so assume not. Again

∑
i |L(xi)| = 9 and

hence there are three colors c1, c2, c3 such that for each t ∈ [3], ct ∈ L(xi) ∩ L(xj) for some
1 ≤ i < j ≤ 3. So assume that c1 appears on x1 and x2, and use it there. If c1 appears on
neither y1 or y2, then we greedily color in the order y3, y4, x3, y1, y2. Otherwise c1 appears
on neither y3 or y4, so we greedily color in the order y1, y2, x3, y3, y4.

Lemma 4.44. E3 ∗B is not d1-choosable iff B ∈
{
K1, K2, E2, E3, P3, K3, K4, K5

}
.
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Proof. Suppose we have B such that E3 ∗B is not d1-choosable. By Lemma 4.27, B is the
disjoint union of complete subgraphs and at most one P3. If B contained a P3, then moving
its middle vertex to the other side of the join would violate Lemma 4.25. By Lemma 4.42, B
has at most three components. By Lemma 4.43, if B has three components, then B = E3. By
Lemma 4.41 and Lemma 4.40, if B has two components then B = E2 or B = P3. Otherwise
B is complete and Lemma 4.29 shows that |B| ≤ 5. This proves the forward implication.

For the other direction, it is easy to verify that E3 ∗B is not d1-choosable for the listed
graphs. The cases B ∈ {K1, K2, E2} are nearly trivial. For B = E3, we are simply recalling
that K3,3 is not 2-choosable. For B ∈ {K3, K4, K5}, see Figure 5. Finally, suppose that
B = P3. Let x1, x2, x3 denote the vertices of the E3 and let y1, y2, y3 denote the vertices
of the P3, where y2 and y3 are adjacent. Assign the lists L(x1) = {1, 2}, L(x2) = {1, 3},
L(x3) = {2, 3}, L(y1) = {1, 2}, and L(y2) = L(y3) = {1, 2, 3}. To color the P3, we clearly
use at least two colors, but now some vertex of the E3 has no remaining colors.

Lemma 4.45. P3 ∗ 2K2 is d1-choosable.

Proof. Let x1, x2, x3 be the vertices of P3, with x2 adjacent to x3, and let y1, y2, y3, y4 be
the vertices of 2K2, with y1 adjacent to y2 and y3 adjacent to y4. By the Small Pot Lemma,
|Pot(L)| ≤ 6, so x1 and x2 have a common color c1. If c1 is absent from the list of some yi,
say y1, then we can use c1 on x1 and x2, then greedily color in the order y4, y3, x3, y2, y1.
Hence c1 appears on all yi. If |Pot(L)| ≤ 5, then x1 and x2 have a second common color c2.
Since c1 and c2 must appear on all yi, we can 2-color the 2K2, then greedily color x1, x2,
and x3. So we can conclude that L(x1) ∩ L(x2) = c1 and L(x1) ∩ L(x3) = c1. Similarly, we
can 2-color the 2K2 if y1 and y3 have any common color other than c1.

Now we use c1 on y2 and y4, and let L′(v) = L(v)−c1 for all uncolored v. Now |Pot(L′)| =
|Pot(L)| − 1 = 5. Let S = {x1, x2, x3, y1, y3}. To show that we can finish the coloring, we
use Hall’s Theorem. We only need to consider subsets T ⊂ S of size 3 or 4. If |T | = 3,
then either {y1, y3} ⊂ T , so | ∪v∈T L′(v)| ≥ |L′(y1)| + |L′(y3)| ≥ 4, or else T contains x2

or x3. Since |L′(x2)| = |L′(x3)| = 3, we are done. If |T | = 4, then either {y1, y3} ⊂ T or
{x1, x2} ⊂ T or {x1, x3} ⊂ T . In each case | ∪v∈T L′(v)| ≥ 4.

Lemma 4.46. P3 ∗ antidiamond is d1-choosable.

Proof. Let x1, x2, x3 be the vertices of P3, with x2 adjacent to x3, and let y1, y2, y3, y4 be the
vertices of the antidiamond, with y3 adjacent to y4. By the Small Pot Lemma, |Pot(L)| ≤ 6,
so x1 and x2 have a common color c. If c is absent from y4, then we use c on x1 and x2, then
greedily color y1, y2, x3, y3, y4. Similarly, if c is absent from y1 and y2, then we use c on x1 and
x2, then greedily color y3, y4, x3, y2, y1. So c must appear on y1 (or y2) and y3, and we use it
there. Let L′(v) = L(v)−c for all uncolored vertices. Now if there exists c2 ∈ L′(y2)\L′(x2),
then we can use c2 on y2 and greedily color x1, y4, x3, x2. The same argument holds if there
exists c2 ∈ L′(y4) \L′(x2). Thus, we must have (L′(y2)∪L′(y4)) ⊆ L′(x2), so y2 and y4 have
a common color c2. We use it on them and greedily color x1, x2, x3.

Lemma 4.47. P3 ∗E4 is d1-choosable.

Proof. Let x1, x2, x3 be the vertices of P3, with x2 adjacent to x3, and let y1, y2, y3, y4 be
the vertices of E4. If three of the yi’s (say y1, y2, and y3) have a common color c, then use

34



c on them, and now greedily color in the order y4, x1, x2, x3. By the Small Pot Lemma, x1

and x2 have a common color c, which we use on them. Now c appears on at most two yi,
say y1 and y2, so we can greedily color in the order y1, y2, x3, y3, y4.

Lemma 4.48. P3 ∗B is not d1-choosable iff B is E3, K|B|, or K1 +K|B|−1.

Proof. Since P3 contains an E2, Lemma 4.27 shows that B is the disjoint union of complete
subgraphs and at most one P3. If B contained a P3, then moving its middle vertex to the
other side of the join would violate Lemma 4.25. By Lemma 4.45 at most one component of
B has more than one vertex. If B has more than two components, then Lemma 4.46 shows
that B is independent and thus Lemma 4.47 shows that B = E3. If B has two components
then it is K1 +K|B|−1. Otherwise B is complete. This proves the forward implication.

The reverse implication is easily checked. For B = E3, see Lemma 4.44. If B = K|B|,
then G is almost complete. Suppose that B = K|B|−1|. Now ∆(G) = ω(G) = |B| + 1, so G
is not d1-choosable.

Lemma 4.49. Let A and B be graphs with |A| ≥ 4 and |B| ≥ 4. The graph A ∗B is not
d1-choosable iff A ∗B is almost complete, K5 ∗E3, or

(
K1 +K|A|−1

)
∗
(
K1 +K|B|−1

)
.

Proof. Suppose A and B are graphs with |A| ≥ |B| ≥ 4 such that A ∗B is not d1-choosable
and not one of the specified graphs.

First suppose A is connected. If A is complete then by Corollary 4.30, |A| = 4 and B is
a claw or B is almost complete. But this implies that G = K5 ∗E3 or G is almost complete.
Hence A is incomplete. Now Lemma 4.25 shows that B is complete. By reversing the roles of
A and B in this argument, we get a contradiction; so A is disconnected. The same argument
shows that B is also disconnected.

Suppose α(A) ≥ 3. Then Lemma 4.44 shows that B is K4 or K5, both impossible as
above. Thus α(A) = 2 and hence A is the disjoint union of two complete graphs. The same
goes for B. Now Lemma 4.48 shows that A = K1 +K|A|−1 and B = K1 +K|B|−1.

The reverse implication is easily checked. If A ∗ B is almost complete, then clearly
it is not d1-choosable. For A ∗ B = K5 ∗ E3, see Figure 5. So suppose that A ∗ B =
(K1 + K|A|−1) ∗ (K1 + K|B|−1). Now ∆(A ∗ B) = ω(A ∗ B) = |A| + |B| − 2, so A ∗ B is not
d1-choosable.

4.4.3 Joins with K2

Definition 9. The net is formed by adding one edge incident to each vertex of K3. The
bowtie is formed by identifying one vertex in each of two copies of K3. The M is formed
from the bowtie by adding an edge incident to a vertex of degree 2.

Lemma 4.50. The graph K2 ∗ A is d1-choosable for all A ∈ {2P3, C4, C5, P5, chair,
antichair,K1 ∗ antipaw,K1 ∗ P4, net,M}

Proof. For eight of these ten choices of A, we have already proved that K2 ∗ A is d1-
choosable. Specifically, we have proved this for 2P3 (Lemma 4.39), C5 (Lemma 4.38), P5

(Lemma 4.35), chair (Lemma 4.36), antichair (Lemma 4.37), K1 ∗ antipaw (Lemma 4.33),
K1 ∗P4 (Lemma 4.32), and C4 (since C4 = E2

2 , this is the case r = 1 in Corollary 4.11). Now
we consider the remaining two cases: net and M.
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Let G = K2 ∗ net. Let x1, x2 denote the vertices of the K2, let y1, y2, y3 denote the
degree-3 vertices in the net, and let z1, z2, z3, denote the leaves of the net, with zi adjacent
to yi. We consider three cases. (1) If there exists c1 ∈ ∩3

i=1L(zi), then we first use c1 on all
three zi and afterwards color y1, y2, y3, x1, x2 greedily. (2) Suppose there exist yi and zj,
with i 6= j, such that there exists c1 ∈ L(yi)∩L(zj); by symmetry we assume this is y1 and z2.
We use c1 on y1 and z2 and let L′(v) = L(v)− c1 for each uncolored vertex v. Now we have
|Pot(L′)| < |G \ {y1, z2}| = 6. Since we have |L′(z1)|+ |L′(y2)|+ |L′(z3)| ≥ 1 + 3 + 2 = 6, we
must have a common color c2 (different from c1) on two of z1, y2, and z3. We use this color
on these two vertices, then greedily color the remaining vertices of the net before coloring
x1 and x2. (3) Observe that if L(z1) and L(z2) are disjoint, then (since |Pot(L)| ≤ 7) either
L(z1) ∩ L(y3) 6= ∅ or L(z2) ∩ L(y3) 6= ∅; in each case, we are in (2). Thus, if we are not
in (1) or (2) above, then (again, since |Pot(L)| ≤ 7) by symmetry we have L(z1) = {a, b},
L(z2) = {a, c}, L(z3) = {b, c}, and L(y1) = L(y2) = L(y3) = {d, e, f, g}. By symmetry,
either a /∈ L(x1) or d /∈ L(x1). Thus, we use a on z1 and z2 and we use d on y3. Now we
greedily color z3, y1, y2, x2, x1.

Let G = K2 ∗M and let x1, x2 denote the vertices of the K2; for the M , let y1 denote
the 1-vertex, y2 the 3-vertex, y3 the 2-vertex adjacent to y2, y4 the 4-vertex, and y5 and y6

the remaining 2-vertices. By the Small Pot Lemma, |Pot(L)| ≤ 7. Since |L(y1)|+ |L(y3)|+
|L(y6)| = 8, two of them must have a common color c. If all three of y1, y3, y6 have c,
then we use c on all three, and afterward we color greedily y2, y4, y5, x1, x2. So now we
consider three cases. (1) If c appears in L(y3) ∩ L(y6), then we use c on y3 and y6, and let
L′(v) = L(v)−c for each uncolored vertex v. By the Small Pot Lemma, |Pot(L′)| ≤ 5. Since
|L′(y1)| + |L′(y4)| ≥ 2 + 4 > 5, we have a common color d (different from c) on y1 and y4.
After we use d on y1 and y4, we color greedily y2, y5, x1, x2. (2) If c appears in L(y1)∩L(y3),
then we use c on y1 and y3 and let L′(v) = L(v)− c for each uncolored vertex v. Again we
have |Pot(L′)| ≤ 5 and |L′(y2)| + |L′(y5)| ≥ 3 + 3 > 5. After using a common color on y2

and y5, we greedily color y4, y6, x1, x2.
(3) Now suppose that c appears in L(y1) ∩ L(y6). If c ∈ L(y2), then we use c on y2 and

y6, and let L′(v) = L(v) − c for each uncolored vertex v. Again we have |Pot(L′)| ≤ 5 and
|L′(y1)|+ |L′(y3)|+ |L′(y5)| ≥ 1 + 3 + 2 (since c /∈ L(y3)). So again we use a common color
on two of y1, y3, and y5, then greedily color the remaining vertices of the M before coloring
x1 and x2. Suppose instead that c /∈ L(y2). Now we use c on y1 and y6, and then use a
common color on y4 and y5 (since |Pot(L′)| ≤ 5 < 6 = 4 + 2 ≤ |L′(y2)| + |L′(y5)|). Finally,
we greedily color y3, y4, x1, x2.

Lemma 4.51. The graph K2 ∗ (B +Kt) is not d1-choosable iff K2 ∗B is not d1-choosable.

Proof. Suppose K2 ∗B is not d1-choosable and let L be a bad list assignment (not using the
colors in [t]). To form a list assignment for K2 ∗ (B+Kt), we start with L, then assign [t] to
each vertex in the Kt and add [t] to the lists for the vertices in the K2. Clearly K2 ∗ (B+Kt)
has no coloring from these lists.

Conversely, suppose K2 ∗B is d1-chooable. Given a list assignment for K2 ∗ (B+Kt), we
greedily color the Kt; what remains is a list assignment for K2 ∗ B; thus, we can finish the
coloring.

Since K2 ∗ 2P3 is d1-choosable (Lemma 4.39) we see that any graph B such that K2 ∗B
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is not d1-choosable must have at most one incomplete component.

Lemma 4.52. If K2 ∗B is not d1-choosable, then B consists of a disjoint union of complete
subgraphs, together with at most one incomplete component H. If H has a dominating vertex
v, then K2∗H = K3∗(H−v), so by Lemma 4.34 we can completely describe H. Otherwise H
is formed either by adding an edge between two disjoint cliques or by adding a single pendant
edge incident to each of two distinct vertices of a clique. Furthermore, all graphs formed in
this way are not d1-choosable.

Proof. Let B be a graph such that K2 ∗ B is not d1-choosable, and let H be the unique
incomplete component of B. Suppose that H does not contain a dominating vertex. We
first show that H is a tree of edge-disjoint cliques (clique tree), i.e., every cycle has an edge
between every pair of its vertices. Since K2 ∗ C4, K2 ∗ C5, and K2 ∗ P5 are d1-choosable, we
get that H has no induced C4, C5, or P5; thus H is chordal. So if H is not a clique tree,
then H contains an induced copy of K−4 ; call it D.

Let w denote a vertex adjacent to D. Each vertex adjacent to D can attach to the vertices
of D in 8 possible ways (up to isomorphism); it can attach to 0, 1, or 2 of the vertices of
degree 2, and also to 0, 1, or 2 of the vertices of degree 3 (but it must attach to at least one
vertex), thus 3 ∗ 3− 1 = 8 possibilites. Five of these possibilities yield a graph J such that
K2∗J is d1-choosable (since J contains an induced copy of either the antichair, K1∗antipaw,
K1 ∗P4, or C4). So we consider the other three possibilities (these are the three possibilities
when w is adjacent to both vertices of degree 3 in D).

If D is not dominating, then some vertex x is distance 2 from D, via w. In each case,
the subgraph induced by D, w, and x contains an induced d1-choosable subgraph (in two
cases this is a antichair, and in the third case it is K1 ∗ antipaw). Hence, D is dominating,
and all of its neighbors are adjacent to both vertices of degree 3 in D. But now H has two
dominating vertices. This contradicts our assumption that H has no dominating vertex.
Hence, H is a clique tree.

Since H has no dominating vertex, it must contain an induced P4, call it P . Since H
has neither a P5 nor a “chair” as an induced subgraph, each vertex adjacent to P must be
adjacent to at least two vertices of P . Since C4 and the antichair and K1∗P4 are all forbidden,
each vertex adjacent to P is adjacent to exactly two consecutive vertices of P . Since both P5

and the net are forbidden, every vertex in H is adjacent to P . Since P1∗antipaw is forbidden,
every pair of vertices that are adjacent to the same two vertices of P are also adjacent to
each other. Finally, since M is forbidden, H must be formed in one of two ways. Either
(a) begin with two disjoint cliques and add an edge between them, or else (b) begin with a
clique and add exactly one edge incident to exactly two vertices of the clique. Furthermore,
all graphs H formed by either (a) or (b) are such that K2 ∗H is not d1-choosable.

In (a), suppose that we begin with a Kr and a Ks. We assign lists as follows: the Kr

gets [r], the Ks gets {r+ 1, . . . , r+s}, the dominating vertices (on the other side of the join)
get [r + t]; finally, the two endpoints of the additional edge also get α added to their lists.
K2 ∗H is clearly not colorable from these lists, since all but one or [r + t] must be used on
H.

In (b), suppose that we begin with a Kr. We assign lists as follows: the Kr gets [r], the
two degree 1 vertices get {r + 1, r + 2}, the dominating vertices (on the other side of the
join) get [r + 2]; finally, the two vertices in the Kr that are endpoints of the pendant edges
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also get r + 1 added to their lists. K2 ∗H is clearly not colorable from these lists, since all
but one of [r + 2] must be used on H.

4.4.4 Mixed list assignments

Lemma 4.53. Let A be a graph with |A| ≥ 4. Let L be a list assignment on G := E2 ∗A
such that |L(v)| ≥ d(v)−1 for all v ∈ V (G) and each component D of A has a vertex v such
that |L(v)| ≥ d(v). Then L is good on G.

Proof. By the Small Pot Lemma, |Pot(L)| ≤ |A| + 1. Say the E2 has vertices {x, y}. Then
|L(x)| + |L(y)| ≥ 2 |A| − 2 > |A| + 1 since |A| ≥ 4. Coloring x and y the same leaves at
worst a d0 assignment L′ on A where each component D has a vertex v with |L′(v)| > dD(v).
Hence we can complete the coloring.

Lemma 4.54. Let A be a graph with |A| ≥ 3. Let L be a list assignment on G := E2 ∗A
such that |L(v)| ≥ d(v) − 1 for all v ∈ V (G), |L(v)| ≥ d(v) for some v in the E2 and each
component D of A has a vertex v such that |L(v)| ≥ d(v). Then L is good on G.

Proof. By the Small Pot Lemma, |Pot(L)| ≤ |A| + 1. Say the E2 has vertices {x, y}. Then
|L(x)| + |L(y)| ≥ 2 |A| − 1 > |A| + 1 since |A| ≥ 3. Coloring x and y the same leaves at
worst a d0 assignment L′ on A where each component D has a vertex v with |L′(v)| > dD(v).
Hence we can complete the coloring.

4.5 Joins with K1

Let G be a d0-choosable graph. If K1 ∗G is not d1-choosable, then we call G bad; otherwise
we call G good. Adding a leaf to a graph does not change whether it is bad, so we focus on
bad G such that δ(G) ≥ 2. We will also restrict our attention to connected bad graphs.

In this section, we apply Lemma 4.20 to characterize all bad triangle-free graphs. An
easy special case of this classification for triangle-free graphs is the following lemma. We
frequently use the idea of an independent set with a common color, so we call an independent
set of size k with a common color an independent k-set.

Lemma 4.55. If G is a connected bipartite graph with more edges than vertices, then K1 ∗G
is d1-choosable.

Proof. Let A and B be the parts of G. Let L be a minimal bad d1-assignment for K1 ∗ G.
Since G has more edges than vertices, G has a cycle. Since G is also bipartite, G is d0-
choosable (by the classification of d0-choosable graphs at the start of Section 4.2). By the
Small Pot Lemma, Pot(L) ≤ |G|. Note that

∑
v∈A d(v) = |E(G)| > |V (G)| ≥ |Pot(L)|.

Similarly
∑

v∈B d(v) > |Pot(L)|. Now we apply Lemma 4.22 with I1 = A and I2 = B. This
proves the lemma.

Lemma 4.56. Let C be a collection of sets I1, . . . , Ik, each of size 2. If for all i 6= j, we have
Ii ∩ Ij 6= ∅, then either there exists v ∈ ∩ki=1Ii or there exist v1, v2, and v3 such that each Ii
equals either {v1, v2} or {v1, v3} or {v2, v3}.
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Proof. Suppose that ∩ki=1Ii = ∅. Consider distinct sets I1 and I2. Let {v1} = I1 ∩ I2, and
let I1 = {v1, v2} and I2 = {v1, v3}. Since ∩ki=1Ii = ∅, there exists I3 such that v1 /∈ I3. So we
must have I3 = {v2, v3}. Now for all k ≥ 4, we must have |Ik ∩ {v1, v2, v3}| = 2.

The core of a graph is its maximum subgraph with minimum degree at least 2. Alter-
natively, it’s the result if we repeatedly delete vertices of degree at most 1 for as long as
possible.

Using Lemmas 4.20 and 4.56, we can prove the following classification.

Lemma 4.57. If a d0-choosable graph G is bad, then K1 ∗G has a d1-list assignment L such
that one of the following 5 conditions holds.

1. L is a d-clique cover of G of size at most |G|.

2. There exists v ∈ V (G) such that L is a d-clique cover of G− v of size at most |G| − 1.

3. There exists a color c such that the union of all independent 2-sets in c induces P4 and
all other independent 2-sets are the end vertices of the P4.

4. The union of all independent 2-sets is E3 or E2.

5. All independent 2-sets in L are the same color.

Proof. Let z denote the K1. We consider the possible ways for a bad list assignment L
to satisfy Lemma 4.20. Clearly L has no independent k-sets, for k ≥ 3. If L has no
independent 2-sets, then Condition 1 holds. If all independent 2-sets in L are the same
color, then Condition 5 holds. If L has only the same independent 2-set in multiple colors,
then the 2-sets induce E2, so Condition 4 holds. So instead L must have distinct independent
2-sets in distinct colors.

Assume that additionally all independent 2-sets intersect in a common vertex v. If
|PotG−v(L)| ≤ |G|−1, then Condition 2 holds. So instead |PotG−v(L)| ≥ |G|. So there exist
some w ∈ G − v and some color c ∈ L(w) such that c /∈ L(z). By Lemma 4.20, G has an
L-coloring that uses c on w and uses some other common color on two vertices of G − w.
Now we can extend the coloring to z.

Now suppose that no vertex v lies in all independent 2-sets. If all independent 2-sets
are distinct colors, then Lemma 4.56 implies that Condition 4 holds. Suppose we have two
independent 2-sets I1 = {v1, v2} and I2 = {v1, v3} in the same color c. Since L has no
independent 3-set, v2 is adjacent to v3. Recall that L has an independent 2-set I3 of another
color c′. If v1 /∈ I3, then I3 is disjoint from either I1 or I2, so we can finish the coloring, by
(2) in Lemma 4.20. Hence v1 ∈ I3. So the only independent 2-sets not containing v1 must
be of color c, say {v2, v4}. Since L has no independent 3-sets, we must have v1 adjacent to
v4. Now we see that every independent 2-set in a color other than c must be {v1, v2}. This
implies that v2 and v3 must be adjacent. Now Condition 3 holds.

Finally, suppose that L has two independent 2-sets I1 = {v1, v2} and I2 = {v3, v4} in
a common color. If we are not in the case above, then G[v1, v2, v3, v4] = C4. Now every
independent 2-set I3 of another color can intersect at most one of I1 and I2, so we can color
the graph by (2) in Lemma 4.20.
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The classification in Lemma 4.57 is somewhat unsatisfying, since it does not immediately
yield a method to construct all bad graphs of a certain size. In Lemma 4.58, we give a more
satisfying characterizations for triangle-free bad graphs.

Lemma 4.58. Let G be d0-choosable and triangle-free. The graph K1 ∗G is not d1-choosable
iff the core of each component of G is an even cycle, except for at most one component which
has a core that is either θ2,3,2l+1 (for some integer l) or is formed from a disjoint union of
even paths by adding a vertex adjacent to all their endpoints.

Proof. Suppose that H is d0-choosable and triangle-free, but that K1∗H is not d1-choosable.
Let z denote the vertex of the K1. Since H is d0-choosable, no component of H can be a
Gallai tree. Hence each component contains an even cycle. If H is a counterexample to the
theorem, then some component D of H contains at least |D|+ 1 edges.

First suppose that there exist two components D1 and D2 of H with at least |D1| + 1
and |D2| + 1 edges, respectively. Let G1 and G2 be the cores of D1 and D2 and let L be a
bad d1-assignment for K1 ∗ (G1 +G2). (We are guaranteed this bad list assignment from our
bad d1-list assignment for K1 ∗H.) By greedily coloring G2, we can get a bad d1-assignment
L1 for K1 ∗ G1. By the Small Pot Lemma, we may assume that |Pot(L1)| ≤ |G1|. Since
|E(G1)| > |G1| we get

∑
v∈G1
|L(v)| = 2|E(G1)| > 2|G1| ≥ 2|Pot(L1)|, so we have a color

class α of size 3 in G1, and hence an independent set of size 2 in G1 with the common color
α. By reversing the roles of G1 and G2, we can find an independent set of size 2 in G2 with
a common color β. Now we can apply (2) from Lemma 4.20. Thus, the core of all but at
most one component D of H is an even cycle. Let G be the core of D and let L be a bad
d1-list assignment for K1 ∗G.

We first prove that every color appears in the list of at most 3 vertices of G. Our plan
is to either find an independent set of size 3 with a color common to its lists or to find two
disjoint independent sets of size 2 with a distinct color common to the lists of each. Then
we can apply (1) or (2) from Lemma 4.20.

Claim 1. We may assume that |PotG(L)| = |G| − 1.
Since G is d0-choosable, we know that G has an L-coloring. If |PotG(L)| < |L(z)| =

|G| − 1, then we can clearly extend the coloring to z. If there is at least one independent 2-
set, then applying Lemma 4.21 gives |PotG(L)| = |G|−1. Otherwise, since G is triangle-free,
|G| = |E| and we are done.

Claim 2. No color appears on 6 or more vertices of G. Suppose the contrary. Since G
is triangle-free (and since R(3, 3) = 6), 3 of these vertices form an independent 3-set. Now
we can apply (1) from Lemma 4.20.

Claim 3. No color appears on 5 vertices of G. Suppose that color α appears on exactly
5 vertices of G. Note that

∑
v∈V |L(v)| =

∑
v∈V dG(v) = 2|E(G)| ≥ 2(|G|+ 1). By Claim 1,

|Pot(L)| = |G| − 1. So by the Pigeonhole Principle (since 2(|G|+ 1|) = 2(|G| − 1) + 4) there
exists a color β 6= α such that β appears on at least 3 vertices in G. Since G is triangle-free,
there exists an independent 2-set I with β as a common color. We may assume that the
subgraph Gα induced by color α has no independent 3-set. Since G is triangle-free, Gα must
be C5. Now Gα has an independent 2-set that is disjoint from I. Thus we can apply (2)
from Lemma 4.20.

Claim 4. No distinct colors α and β each appear on 4 vertices of G. Suppose that colors
α and β each appear on 4 vertices of G and let Gα and Gβ be the subgraphs induced by these
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colors. Since Gα is bipartite and has no independent 3-set, we can partition V (Gα) into two
independent 2-sets I1 and I2. Similarly, we can partition V (Gβ) into independent 2-sets J1

and J2. Now we can finish by (2) from Lemma 4.20 unless each of I1 and I2 intersects each
of J1 and J2. This implies that V (Gα) = V (Gβ) = I1 ∪ I2. Thus, we can use α on I1 and β
on I2.

Claim 5. If G has a color class α of size 4 and a color class β of size 3, then α induces a
P4, β induces a P3, and the P3 and P4 together induce a C5. Let Gα and Gβ be the subgraphs
induced by α and β. Let I be an independent 2-set in Gβ. Since Gα is bipartite and has no
independent 3-set, Gα is a subgraph of C4 with at least two edges. If Gα is C4, then let J1

and J2 denote the disjoint independent 2-sets in Gα. No independent set intersects both J1

and J2. Thus, we can apply (2) to I and some Ji. Similarly, if Gα = 2K2, then I is disjoint
from some independent 2-set in Gα. Hence, Gα = P4 and I consists of the endpoints of the
P4. If Gβ is not P3, then we have a second choice for I, which cannot also be the endpoints
of Gα. Thus, Gβ = P3. Since G is triangle-free, we get that Gα∪β = C5.

Claim 6. No color appears on 4 vertices of G. By Claim 4, suppose that exactly one
color, α, appears on 4 vertices of G. Let ci denote the number of colors that appear on exactly
i vertices. We have 2|E| =

∑
v∈V d(v) =

∑
v∈V |L(v)| = c1 +2c2 +3c3 +4(1). By Claim 1, we

know that |Pot(L)| = |G|−1, so c1+c2+c3+1 = |G|−1. Multiplying the second equation by 2
and subtracting it from the first gives 2(|E|−|G|) = c3−c1. Let x and y denote the endpoints
of Gα, as given by Claim 5. For each color class β of size 3, we can apply Claim 5. Thus each
color in a class of size 3 appears on both x and y; so does color α. Hence d(x) ≥ 1 + c3 and
d(y) ≥ 1+c3. Note that 2(|E|−|G|) =

∑
v∈V (d(v)−2) ≥ (d(x)−2)+(d(y)−2) ≥ 2c3−2; the

first inequality holds because G is the core, and thus δ(G) ≥ 2. Combining this inequality
with the equality above, we get c3 − c1 ≥ 2c3 − 2, which implies that 2 − c1 ≥ c3. Finally,
this implies that |E| − |G| ≤ 1.

If |E| − |G| = 0, then G is simply a 5-cycle, which is a Gallai tree, which yields a
contradiction. Hence |E| − |G| = 1, which implies that c3 = 2 and c1 = 0. Thus d(x) =
d(y) = 3. Since |E| = |G| + 1, δ(G) = 2, and x and y lie on a common cycle, G must be a
theta graph Θ2,3,k. If any color class of size 2 is an independent set I, then I must be {x, y}
(since otherwise we could use a common color on I and on two vertices of Gα); however, this
is impossible, since we have already accounted for all of L(x) and L(y). Thus, every color
class of size 2 must induce a K2. Now a simple parity argument shows that the final path of
the theta graph has odd length, so G is Θ2,3,2l+1.

Claim 7. No vertex u is contained in every independent 2-set. Suppose instead that
such a u exists. By Claim 1, |Pot(L)| = |G| − 1. Since δ(G) ≥ 2, we get

∑
v∈(V−u) dG(v) ≥

2(|G| − 1). Since u appears in every independent 2-set (and G is triangle-free), each color
appears at most twice on G − u. Since |PotG−u(L)| ≤ |Pot(L)| ≤ |G| − 1, every color in
|PotG−u(L)| appears exactly twice on G−u and furthermore dG−u(v) = 2 for all v ∈ V (G)−u.
Hence, G− u is a disjoint union of paths. Since each color class must induce a K2 in G− u,
we see that each path must be of odd length.

Claim 8. No such G exists. If there exist independent 2-sets I1 and I2, both with
common color α, then by Claim 6, I1 and I2 intersect. Clearly, if independent 2-sets I1

and I2 have distinct common colors, then they must intersect (or we are done by (2) from
Lemma 4.20). Thus, every pair of independent 2-sets intersects. Now by Claim 7 and
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Lemma 4.56, there exist vertices v1, v2, v3 such that every independent 2-set is either {v1, v2}
or {v1, v3} or {v2, v3}.

Now, similar to in Claim 6, we have 2|E| = c1 + 2c2 + 3c3 and c1 + c2 + c3 = |G| − 1.
Again 2(|E|− |G|) = c3−c1−2. Now we have 2(|E|− |G|) =

∑
v∈G(d(v)−2) ≥ (d(v1)−2)+

(d(v2)− 2) + (d(v3)− 2) ≥ 2c3 − 6. So c3 − c1 − 2 ≥ 2c3 − 6, which implies that c3 ≤ 4, and
hence |E|−|G| ≤ 1. If |E|−|G| = 0, then G is a cycle, so we may assume that |E|−|G| = 1,
which implies that c1 = 0 and c3 = 4.

Since c3 = 4, there exist distinct colors α, β, and γ, each of which appear on independent
2-sets; say α appears on {v1, v2}, and β appears on {v1, v3} and γ appears on {v2, v3}. Let w1,
w2, and w3 denote the third vertices with color α, β, and γ, respectively. If two (or all three)
of the wi coincide, then that vertex w has degree at least 3, so

∑
v∈V (d(v) − 2) ≥ 2c3 − 5.

This implies that c3 ≤ 3, which contradicts our assumption that c3 = 4. If instead w1, w2,
and w3 are distinct, then {v1, v2, v3, w1, w2, w3} induces a 6-cycle. Since the only two vertices
in G of degree 3 lie on the 6-cycle, G is a theta graph. Suppose, without loss of generality,
that v1 and v2 each appear in three color classes of size 3 and that v3 appears in two of them.
Now we have fully accounted for the colors in L(v1), L(v2), L(v3), and L(w1). However, we
still need another color in each of L(w2) and L(w3). Since c1 = 0, this gives a contradiction.
We have now completed one direction of the proof. Below, we give the other direction.

Form G′ from G by adding a pendant edge. Observe that K1 ∗ G′ is d1-choosable iff
K1 ∗G is d1-choosable. Any d1-list assignment will give a single color to the degree 1 vertex,
so K1 ∗ G′ has a coloring from its lists iff K1 ∗ G has a coloring from the resulting d1-list
assignment. Thus, given a graph H and its core G, the graph K1 ∗ H is d1-choosable iff
K1 ∗ G is d1-choosable. To complete the proof, we need only provide list assignments to
show that K1 ∗G is not d1-choosable when G is a disjoint union of 4+-cycles together with at
most component that is Θ2,3,2l+1 or is formed from a disjoint union of odd paths by adding
a vertex adjacent to all their endpoints.

For a k-cycle, we assign to each edge a distinct color and assign to each vertex the colors
on its two incident edges. Since each color can be used only once in a proper coloring, every
coloring of the k-cycle uses all k colors in its lists. Thus, if we let L(z) contain k− 1 of those
colors, then K1 ∗Ck has no L-coloring. Furthermore, for any graph G and any integer k, the
graph K1 ∗ (G+ Ck) is d1-choosable iff K1 ∗G is d1-choosable.

Suppose that G is formed from disjoint even paths by adding a vertex v adjacent to all
of their endpoints. We partition each path into copies of K2 and give the vertices in each
K2 the same list, say {αi, βi}. We use disjoint lists on each K2 and we assign an arbitrary
list of colors to vertex v. Finally, let L(z) = ∪{αi, βi}. Any proper coloring of G − u will
use all the colors in ∪{αi, βi}. Thus, z will have no color.

Finally, suppose that G = Θ2,3,2l+1. Let v1, v2, v3, v4, v5 denote the vertices of the 5-cycle,
where d(v1) = d(v4) = 3. Let L(v1) = L(v4) = {a, b, c}, L(v2) = L(v3) = {a, d}, and
L(v5) = {b, c}. Partition the 2l− 1 path of G \ {v1, . . . , v5} into copies of K2. As above, give
the vertices in each copy of K2 the same list {αi, βi}; use disjoint lists on the K2s. Now let
L(z) = {a, b, c, d}∪ (∪{αi, βi}). Since each of {a, b, c, d} must be used on v1, . . . , v5, no color
remains for z.
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Notation

Symbology Meaning

|G| the number of vertices G has

‖G‖ the number of edges G has

G[S] the subgraph of G induced on S

EG(X, Y ) the edges in G with one

end in X and the other in Y

EG(X) EG(X, V (G)−X)

χ(G) the chromatic number of G

ω(G) the clique number of G

α(G) the independence number of G

∆(G) the maximum degree of G

δ(G) the minimum degree of G

κ(G) the vertex connectivity of G

G the complement of G

A+B the disjoint union of graphs A and B

A ∗B the join of graphs A and B (that is, A+B)

kG G+G+ · · · +G︸ ︷︷ ︸
k times

Gk G ∗G ∗ · · · ∗G︸ ︷︷ ︸
k times

H ⊆ G H is a subgraph of G

H ⊂ G H is a proper subgraph of G

H EG H is an induced subgraph of G

H CG H is a proper induced subgraph of G

H ≺ G H is a child of G

f : S ↪→ T an injective function from S to T

f : S � T a surjective function from S to T

X := Y X is defined as Y

Kk the complete graph on k vertices

Ek the edgeless graph on k vertices (that is, Kk)

Pk the path on k vertices

Ck the cycle on k vertices

Ka,b the complete bipartite graph with

parts of size a and b (that is, Ea ∗Eb)
[n] {1, 2, . . . , n}
N the natural numbers (0, 1, 2, . . .)

R the real numbers
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