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Abstract

In [4], Cariolaro et al. demonstrated how colorability problems can be approached
numerically by the use of computer algebra systems and the Combinatorial Nullstel-
lensatz. In particular, they verified a case of the List Coloring Conjecture by proving
that the list-chromatic index of K6 is 5. In this short note, we show that using the
coefficient formula of Schauz [16] is much more efficient than using partial derivatives.
As a consequence we are able to show that list-chromatic index of K8 is 7 and the
list-chromatic index of K10 is 9.

1 Introduction

List coloring was introduced by Vizing [17] and independently Erdős, Rubin and Taylor [9].
Let G be a graph. A list assignment on G is a function L from V (G) to the subsets of N.
A graph G is L-colorable if there is π : V (G)→ N such that π(v) ∈ L(v) for each v ∈ V (G)
and π(x) 6= π(y) for each xy ∈ E(G). For k ∈ N, a list assignment L is a k-assignment if
|L(v)| = k for each v ∈ V (G). We say that G is k-choosable if G is L-colorable for every
k-assignment L. The least k for which G is k-choosable is the choice number of G, written
ch(G). The choice number of the line graph of G is the list-chromatic index of G, written
ch′(G). We write χ′(G) for the chromatic index of G; that is, the chromatic number of the
line graph of G.

Since any k-choosable graph is L-colorable from the k-assignment given by L(v) = [k],
we have ch′(G) ≥ χ′(G). That this inequality is always an equality has been conjectured
independently by multiple researchers (see [13], Section 12.20). This is the List Coloring
Conjecture.

Conjecture 1.1 (List Coloring Conjecture). ch′(G) = χ′(G) for every multigraph G.

This conjecture is open even for complete graphs. Häggkvist and Janssen [11] settled the
conjecture for Kn when n is odd by showing that ch′(Kn) = χ′(Kn) = n. When n is even,
we have χ′(Kn) = n− 1, so the conjecture reduces to the following.

Conjecture 1.2. ch′(K2k) = 2k − 1 for all k ≥ 1.

Conjecture 1.2 holds trivially for k = 1. Since K4 is planar, then k = 2 case follows
from the result of Ellingham and Goddyn [8] that the List Coloring Conjecture holds for
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every 1-factorable planar graph. Moreover, Ellingham and Goddyn [8] state that they have
verified the k ≤ 5 cases by computer. Cariolaro et al. verified the k = 3 case using the
Combinatorial Nullstellensatz and a computer algebra system. We verify the k = 4, 5 cases
using Schauz’s coefficient formula for the Combinatorial Nullstellensatz [16]. The ability to
quickly determine coefficients of the graph polynomial has many other uses. With Cranston,
in [5] we proved that the choice number of the square of a graph is at most its degree squared
minus one unless the graph is one of a few exceptions. This proof involved showing that many
small induced subgraphs could be excluded by the Combinatorial Nullstellensatz. There is
a web version of the author’s graph software at http://bit.ly/webraphs which may be
useful to others.

2 Combinatorial Nullstellensatz

In [2], Alon and Tarsi introduced a beautiful algebraic technique for proving the existence
of list colorings. Alon [1] further developed this technique into the Combinatorial Nullstel-
lensatz. Fix an arbitrary field F. We write fk1,...,kn for the coefficient of xk11 · · ·xknn in the
polynomial f ∈ F[x1, . . . , xn].

Lemma 2.1 (Alon [1]). Suppose f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈ N with
∑

i∈[n] ki =

deg(f). If fk1,...,kn 6= 0, then for any A1, . . . , An ⊆ F with |Ai| ≥ ki + 1, there exists
(a1, . . . , an) ∈ A1 × · · · × An with f(a1, . . . , an) 6= 0.

Micha lek [15] gave a very short proof of Lemma 2.1 just using long division. Schauz [16]
sharpened the Combinatorial Nullstellensatz by proving the following coefficient formula.
Versions of this result were also proved by Hefetz [12] and Lasoń [14]. Our presentation
follows Lasoń.

Lemma 2.2 (Schauz [16]). Suppose f ∈ F[x1, . . . , xn] and k1, . . . , kn ∈ N with
∑

i∈[n] ki =

deg(f). For any A1, . . . , An ⊆ F with |Ai| = ki + 1, we have

fk1,...,kn =
∑

(a1,...,an)∈A1×···×An

f(a1, . . . , an)

N(a1, . . . , an)
,

where
N(a1, . . . , an) :=

∏
i∈[n]

∏
b∈Ai−ai

(ai − b).

3 List edge-coloring complete graphs

To apply the Combinatorial Nullstellensatz to graph coloring, we need one further definition.
The graph polynomial of a graph G with vertex set {1, . . . , n} is

PG(x1, . . . , xn) :=
∏

ij∈E(G)
i<j

(xi − xj).

For a graph G, let L(G) be the line graph of G. Applying Lemma 2.1 to the graph
polynomial of L(G) gives the following.
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Corollary 3.1. Let G be a d-regular graph with χ′(G) = d. Let f be the graph polynomial
of L(G). If fd−1,...,d−1 6= 0, then ch′(G) = d.

Cariolaro et al. used partial derivatives and the k = 3 case of Corollary 3.1 to show
that ch′(K6) = 5. In particular, they showed that f4,...,4 = −720. Using Lemma 2.2, this
coefficient can be computed in under a second on a basic laptop. To try this out, go to
http://bit.ly/webgraphs_LK_6, in the “Orientations” menu, select “compute coefficient”
and then “use current orientation”. For k = 4, the same method gives f6,...,6 = 21772800,
but the computation takes about six hours to complete. To do K10, we need a more efficient
method.

To get a more efficient method, we use the fact that Lemma 2.2 simplifies greatly in the
case of d-regular graphs with chromatic index d. In fact each term of the sum is either 1 or
−1. Alon [3] proved this in slightly different form; we follow the presentation in Hefetz [12].
Put sign(x) := x

|x| for x 6= 0 and sign(0) := 0.

Lemma 3.2. Let G be a d-regular graph with χ′(G) = d. Let n = |E(G)| and let f be the
graph polynomial of L(G). Then

fd−1,...,d−1 =
∑

(a1,...,an)∈[d]n
sign(f(a1, . . . , an)).

Lemma 3.3. Let G be a d-regular graph with χ′(G) = d. Let n = |E(G)| and let f be the
graph polynomial of L(G). For any permutation π of [d] and any (a1, . . . , an) ∈ [d]n, we have
sign(f(π(a1), . . . , π(an)) = sign(f(a1, . . . , an)).

Proof. Since every permutation can be written as a product of adjacent transpositions, it will
suffice to prove the lemma for π = (c c+1). Also, we may assume sign(f(a1, . . . , an)) 6= 0. For
a factor (ai−aj) of f(a1, . . . , an) we have sign(π(ai)−π(aj)) = sign(ai−aj) unless {ai, aj} =
{c, c+ 1} in which case sign(π(ai)− π(aj)) = − sign(ai − aj). Consider the edge-coloring of
L(G) given by (a1, . . . , an). In this edge-coloring, each vertex is incident to an edge colored
c and an edge colored c+ 1. So there is a factor (ai − aj) with {ai, aj} = {c, c+ 1} for each
vertex of G. Since |G| is even, we have sign(f(π(a1), . . . , π(an)) = sign(f(a1, . . . , an)).

So, by Lemma 3.3, to compute fd−1,...,d−1, we only need to sum sign(f(a1, . . . , an)) over
all one-factorizations up to color permutation and then multiply by d!. For K6 there are 6
distinct one-factorizations, plugging them into f shows that they all have negative sign. So
for K6, we have f4,...,4 = 5!(−6) = −720 which agrees with the result in [4].

Theorem 3.4. K8 has 5280 positive one-factorizations and 960 negative one-factorizations.
Therefore f6,...,6 = 7!(5280− 960) = 21772800. In particular, ch′(K8) = 7.

We also conclude that the total number of one-factorizations of K8 is 6240 which is in
agreement with [6].

Theorem 3.5. K10 has 598993920 positive one-factorizations and 626572800 negative one-
factorizations. Therefore f8,...,8 = 9!(598993920 − 626572800) = −10007823974400. In par-
ticular, ch′(K10) = 9.
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We also conclude that the total number of one-factorizations of K10 is 1225566720 which
is in agreement with [10]. There was a bit of confusion around the correctness of this count
because it is incorrectly cited in [18] as 1255566720; this discrepancy was noted by Dinitz,
Garnick and McKay [7].
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