
graph theory notes∗

The union of a forest and a star forest is 3-colorable

Norbert Sauer conjectured the following in 1993 [4] and Michael Stiebitz proved it in
1994 [5]. A star forest is a forest where each component has a dominating vertex called the
root. It is easy to see that for two forests F1 and F2 we have χ(F1 ∪ F2) ≤ 4. We can do
better when one of the forests is a star forest.

Theorem (Stiebitz). If F1 is a star forest and F2 is a forest, then χ(F1 ∪ F2) ≤ 3.

In fact, Stiebitz proved a stronger statement. Theorem follows immediately by applying
Lemma with k = 3, F = F2 and H the subgraph of G induced on the set of roots of F1.
The following proof and picture are from the paper Brooks’ Theorem and Beyond with Dan
Cranston [3].

Lemma (Stiebitz). Let H be an induced subgraph of a graph G with χ(H) ≤ k for some
k ≥ 3. Then χ(G) ≤ k if G has a spanning forest F where

1. for each component C of H, F [V (C)] is a tree; and

2. dG(v) ≤ dF (v) + k − 2 for every v ∈ V (G−H).

Proof. For any graphs U and W , we write U −W for the subgraph of U induced by V (U) \
V (W ). If uv ∈ E(F ), then u is an F -neighbor of v, and u and v are F -adjacent. Suppose
the lemma is false and choose a counterexample pair G,H minimizing |G −H|. Note that
each vertex v in G−H must have a neighbor in H, since otherwise we can add v to H. Thus
|H| ≥ 1.

Claim 1. If there exists v ∈ V (G − H) adjacent to components A1, . . . , As of H with
dG(v) ≤ s + k − 2, then there exist i and j, with i 6= j, and a path in F − v from Ai to
Aj. Suppose not and choose such a v ∈ V (G − H). We will find a k-coloring of G. For
each i ∈ [s], let zi be a neighbor of v in Ai. Form G′, F ′, H ′ from G, F , H (repectively)
by deleting v and identifying all zi as a single new vertex z. Now χ(H ′) ≤ k, since by
permuting colors in each component we can get a k-coloring of H where all the zi use the
same color. Also, F ′ is a spanning forest in G′ since we are assuming there is no path in
F − v from Ai to Aj whenever i 6= j. It is easy to check that Conditions (1) and (2) hold
for G′, F ′, H ′. Now |G′ −H ′| < |G−H|, so by minimality of |G−H|, we have a k-coloring
of G′. This gives a k-coloring of G − v where z1, . . . , zs all get the same color. So v has at
most dG(v)− (s− 1) ≤ k − 1 colors used on its neighborhood, leaving a color free to finish
the k-coloring on G, a contradiction.
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Figure 1: The left figure shows Claim 1. The right figure shows Claim 3.

Claim 2. Every leaf of F is in H and every vertex not in H has an F -neighbor not in H.
We can rewrite this formally: dF (v) ≥ 2 and dF−H(v) ≥ 1 for all v ∈ V (G −H). Applying
Claim 1 with s = 1 implies dG(v) ≥ k. Now Condition (2) gives dF (v) ≥ dG(v) + 2− k ≥ 2.
Suppose dF−H(v) = 0 for some v ∈ V (G − H). Since F is a forest, Condition (1) implies
that all F -neighbors of v must be in different components of H. Moreover there can be no
path between two of these components in F − v. Condition (2) gives dG(v) ≤ dF (v) + k− 2,
so applying Claim 1 with s = dF (v) gives a contradiction. Thus dF−H(v) ≥ 1 for all
v ∈ V (G−H).

Claim 3. There exists v in G − H with dF−H(v) = 1 such that every component of H
that is F -adjacent to v is not F -adjacent to any other vertex in G − H. Form a bipartite
graph F ′ from F by contracting each component of H and each component of F −H to a
single vertex. Since F is a forest, Condition (1) implies that F ′ is also a forest. So some
vertex contracted from a component A of F −H has at most one neighbor of degree at least
2; say this neighbor is contracted from B, where B ⊆ (F ∩ H). (If not, then we can walk
between components of H and F −H until we get a cycle in F .) Let v be a leaf of A that
is not F -adjacent to B; this gives dF−H(v) = dA(v) ≤ 1. Claim 2 gives dF−H(v) ≥ 1, so in
fact dF−H(v) = 1 as desired.

Claim 4. If the v in Claim 3 is adjacent to a component of H, then it is F -adjacent to
that component. Let A1, . . . , Ar be the components of H that are F -adjacent to v, where
r = dF (v)− 1. Suppose there is another component Ar+1 of H that is adjacent to v. Since
no vertex of G−H besides v is F -adjacent to any of A1, . . . , Ar, there can be no F -path in
F − v between any pair among A1, . . . , Ar, Ar+1. Now the contrapositive of Claim 1 implies
that dG(v) > (r + 1) + k − 2 = dF (v) + k − 2; this inequality contradicts Condition (2).

Claim 5. The lemma holds. Let H ′ := G[V (H)∪ {v}], with v as in Claims 3 and 4. By
Claim 4, Condition (1) of the hypotheses holds for H ′. Condition (2) clearly holds and F
is still a forest. Also, by permuting colors in the components we can get a k-coloring of H
where all F -neighbors of v get the same color. Hence v has at most dH(v)− (dF (v)− 2) ≤
dG(v)− 1− (dF (v)− 2) = dG(v)− dF (v) + 1 ≤ k − 1 colors on its neighborhood. Hence H ′

is k-colorable. But then, by minimality of |G−H|, G is k-colorable, a contradiction.

Combined with a result on the existence of spanning trees with pairwise non-adjacent
leaves [1], Lemma yields Brooks’ theorem [2]. See [3] for details.

Question. Are there other applications of Lemma?

∗clarifications, errors, simplifications ⇒ landon.rabern@gmail.com
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